Semantyka i weryfikacja programoéw 2025/26.
Egzamin I termin, 26/01/2026, zadanie 1 (semantyka)

Ponizej zaproponowana jest skladnia pewnego jezyka programowania.

Varszu=zx|y|z| ...
PName>P:=P|Q|R| ...
Numsn:u= ... [-1|0]1] ...
Exproe:=n|z|e+te|eg—ex|erxey
Decl > d:=¢|var z = e | proc P{I} | d;ds
Inst >/ ::=Dbegindin I end | x:=¢ | I1;15 | if e> 0 then {[,} else {I,} |

call P | again | back | exit

Wyrazenia, deklaracje zmiennych (z nadana wartoscia poczatkowa) i bezparametrowych, re-
kurencyjnych procedur oraz instrukcje, oprocz wymienionych ponizej, maja standardowe zna-
czenie. Zmienne i procedury lokalne sg deklarowane w obrebie blokéw begin...in...end. Wi-
doczno$c¢ identyfikatoréw zmiennych i nazw procedur jest statyczna ze standardowymi regutami
przestaniania. Procedury sa bezparametrowe (i nie zwracaja wartosci), zmienne i nazwy pro-
cedur uzyte wewnatrz cial procedur sa wigzane statycznie, procedury dopuszczaja wywolania
rekurencyjne. Instrukcja call P wywoluje procedure o nazwie P widoczng w danym miejscu
kodu. Wyrazenia arytmetyczne wyliczaja sie do wartosci liczbowych Num bez efektéw ubocz-
nych.

Szczegolna cecha jezyka sa wymienione nizej instrukcje, ktorych wykonanie wewnatrz ciata
procedury powoduje:

e again — przerwanie zwyklego wykonywania aktualnego wywotania procedury i ponowne
wykonanie jej ciata od poczatku (skok do poczatku ciata procedury);

e back — skok na poczatek instrukcji w najmniejszym wykonywanym w tym momencie
bloku begin...in...end (czyli bezposrednio za stowo in w tym bloku); to wymaga prze-
rwania wykonywania przynajmniej jednego aktualnego wywotania procedury;

e exit — zakonczenie dziatania bloku, w ktérym aktualnie wywolana procedura zostata
zadeklarowana, i skok bezposrednio za ten blok; to tez wymaga przerwania wykonywania
przynajmniej jednego aktualnego wywotania procedury.

Zmnaczenie instrukcji again, back i exit poza ciatem procedury moze by¢ dowolne. Podobnie,
mozna nie okresla¢ znaczenia wywotan call P w miejscu, gdzie nie jest widoczna zadna procedura
o nazwie P, ani przypisan z := e, gdzie zmienna x nie jest dostepna.

Zadanie

Zadanie polega na napisaniu semantyki denotacyjnej w stylu kontynuacyjnym dla kategorii
syntaktycznej Inst instrukcji powyzszego jezyka oraz semantyki denotacyjnej w wybranym stylu
dla kategorii syntaktycznej Decl. W tym celu nalezy jednoznacznie zdefiniowa¢ typy funkeji
semantycznych dla Inst, Decl, oraz Expr wraz ze wszystkimi uzywanymi typami pomocni-
czymi. Mozna zalozy¢, ze dany jest typ Ans oznaczajacy finalne wyniki dziatlania programu.
Mozna pominaé¢ rownania semantyczne dla wyrazeni, ale nalezy poda¢ rownania semantyczne dla
wszystkich postaci instrukecji Inst oraz deklaracji Decl w tym jezyku.

Mozna przyja¢, ze dany jest nieskoriczony zbior lokacji Loc oraz funkcja matematyczna
newloc: (Loc —g, Num) — Loc spehiajaca newloc(s) ¢ dom(s) dla s: Loc —g, Num (gdzie
Loc —g, Num to zbior funkeji czesciowych z Loc do Num, ktorych dziedzina jest skoriczona).

verte!

Przyktad Wykonanie ponizszej instrukcji spowoduje w kolejnych liniach kodu:

0:
1
2
3
4: in
5:
6.
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:

begin var x = 2;

proc P { if x > 0 then { back }
else { if x + 1 > 0 then { x := x - 1; again }
else {x:=x-1%}}1}
begin in x := x - 1;
call P end;
begin var y = 2;
proc Q { if x > 0 then { x := x - 1; call Q }
else { if y > O then { back }
else { if y + 1 > 0
then { begin iny :=y - 1;
if y + 2 > 0 then { call Q }
else { x :=x - 2; exit } }
else { back } } } }

in x := x + 3;
begin var x = 7 iny =y - 1;
call Q end;
end;
call P

19: end

0)
1)
4)
5)
1)
4)
5)
1,2)

1,2,3)

7)
14)
15,16)

7,8)

15,16)
7,8,9)
10)
11)
7,8,9)
13)

10)
11)
12)

18)
1,2,3)

Zadeklarowanie zmiennej xy o wartosci 2.

Zadeklarowanie procedury P, wiazacej statycznie zmienng xg.

Zmniejszenie wartosci zmiennej xg do wartosci 1.

Wywotanie procedury P.

Warunek zachodzi; back przerywa wywotanie P i powoduje skok do instrukeji bloku z linii 4.
Zmniejszenie wartosci zmiennej xg do wartosci 0.

Drugie wywotanie procedury P.

Zachodzi warunek z linii 2; warto$¢ x¢ zmniejsza sie do —1; again powoduje powrét do poczatku
ciata procedury P.

Warunki z linii 1 i 2 nie zachodza; wartos¢ x¢ zmniejsza sie do —2, co koriczy wywotanie P.
Zadeklarowanie zmiennej yo o wartosci 2.

Zadeklarowanie procedury @, wigzacej statycznie zmienne xg i yg.

Zwiekszenie wartosci g do 1.

Zadeklarowanie zmiennej 1 o wartosci 7; zmniejszenie yg do 1; wywolanie procedury Q.
Warunek zachodzi; zmniejszenie xg do 0; drugie, rekurencyjne wywotanie Q).

Zachodzi warunek z linii 8; back powoduje przerwanie wywotan @ (obu aktualnych wywotar:
rekurencyjnego z linii 7 i zewnetrznego z linii 16) i skok do instrukcji bloku z linii 15.
Zmniejszenie yy do 0, kolejne wywotanie procedury Q.

Zachodzi warunek z linii 9.

Zmniejszenie yo do —1.

Warunek zachodzi; rekurencyjne wywotanie Q.

Zaden z tych warunkow nie zachodzi.

back powoduje przerwanie rekurencyjnego wywotania @) i skok do instrukcji bloku z linii 10
(w zewnetrznym wywotaniu Q).

Zmniejszenie yo do —2.

Warunek nie zachodzi.

Zmniejszenie xg do —2; exit przerywa wywotanie procedury @ i powoduje skok bezposrednio
za blok z linii 6-17.

Ponowne wywotanie procedury P.

Warunki zlinii 1 i 2 nie zachodza; zmniejszenie g do —3 konczy to wywotanie P, calej rozwa-
zanej instrukeji (i przyktad).

Rozwigzanie
Rozwazmy nastepujace typy pomocnicze:

Env = Var — Loc
Store = Var — Num
Cont = Store — Ans
PEnv = PName — Proc
Proc = Cont — Cont — Cont
(back — za > przed)

Uzywaé bedziemy funkcji semantycznych:

&: Expr — Env — Store — Num
D: Decl — Cont — (PEnv, Env, Store) — (PEnv, Env, Store)
(exit — ...)
Z: Inst - PEnv — Env — Cont® — Cont — Cont — Cont
(back +— za + przed)

A

-~

(exit (kp),again (k4), back (HB)S
Funkcja semantyczna & jest dana, natomiast funkcje D i Z zdefiniujemy nastepujaco:

Dle] k& (pp,pv,s) = (pp. pv,)
D(var x =e] kg (pp,pv,s) =let ¢ = E[e] py s in
let ¢ = newloc(s) in
let py, = py[z — (] in
let s' = s[l — ¢] in
(PP:P/wS')
Dlproc P{I}] kg (pp,pv,s) =let rec X = Akp. Ak.
Z[I] pplP — X]| pv (kg, (X kB K),kB) kp K In
(pp[P = X], pv.5)

Dldy; do] #ip = (D[d1] g); (Dllde] rr)

Z[begin d in I end] pp py K = Akg?. Ak. As.

let (p/]37p/\/a 8,) = D[[d]] K (pP7pV’ S) in

let rec Ky = Z[I] plp p}y K Ky K in

Ky s

I[skip] pp pv K Ky & =
Iz :=e] pp pv K kg £ = As. k s[py(x) — E[e] pv 3]
I[1;] pp pv E Ky & =I[L] pp pv E K (I[[[z]] pp pv K Kp ’f)
Z[if e > 0 then I, else L] pp py R Ky k = As.ifte(E[e] pv s > 0,

Z[4L] pp pv E K £ s,
I[L) pp pv R K K s)

Z[call P]| pp pv (Kg,ka,kB) K k= pp P K K

Z[again] pp pv (Kg, ka, k) K5 k = Ka
I[back] pp pv (KEg, ka4, kB) K5 K = KB
Tlexit] pp pv (kg, kB, ka) K kK = kp

