
Semantyka i wery�kacja programów 2025/26.
Egzamin I termin, 26/01/2026, zadanie 1 (semantyka)

Poni»ej zaproponowana jest skªadnia pewnego j¦zyka programowania.

Var ∋ x ::= x | y | z | . . .

PName ∋ P ::= P | Q | R | . . .

Num ∋ n ::= . . . | -1 | 0 | 1 | . . .

Expr ∋ e ::= n | x | e1 + e2 | e1 − e2 | e1 ∗ e2
Decl ∋ d ::= ε | var x = e | proc P{I} | d1; d2
Inst ∋ I ::= begin d in I end | x := e | I1; I2 | if e > 0 then {I1} else {I2} |

call P | again | back | exit

Wyra»enia, deklaracje zmiennych (z nadan¡ warto±ci¡ pocz¡tkow¡) i bezparametrowych, re-
kurencyjnych procedur oraz instrukcje, oprócz wymienionych poni»ej, maj¡ standardowe zna-
czenie. Zmienne i procedury lokalne s¡ deklarowane w obr¦bie bloków begin . . . in . . . end. Wi-
doczno±¢ identy�katorów zmiennych i nazw procedur jest statyczna ze standardowymi reguªami
przesªaniania. Procedury sa bezparametrowe (i nie zwracaj¡ warto±ci), zmienne i nazwy pro-
cedur u»yte wewn¡trz ciaª procedur s¡ wi¡zane statycznie, procedury dopuszczaj¡ wywoªania
rekurencyjne. Instrukcja call P wywoªuje procedur¦ o nazwie P widoczn¡ w danym miejscu
kodu. Wyra»enia arytmetyczne wyliczaj¡ si¦ do warto±ci liczbowych Num bez efektów ubocz-
nych.

Szczególn¡ cech¡ j¦zyka s¡ wymienione ni»ej instrukcje, których wykonanie wewn¡trz ciaªa
procedury powoduje:

� again � przerwanie zwykªego wykonywania aktualnego wywoªania procedury i ponowne
wykonanie jej ciaªa od pocz¡tku (skok do pocz¡tku ciaªa procedury);

� back � skok na pocz¡tek instrukcji w najmniejszym wykonywanym w tym momencie
bloku begin . . . in . . . end (czyli bezpo±rednio za sªowo in w tym bloku); to wymaga prze-
rwania wykonywania przynajmniej jednego aktualnego wywoªania procedury;

� exit � zako«czenie dziaªania bloku, w którym aktualnie wywoªana procedura zostaªa
zadeklarowana, i skok bezpo±rednio za ten blok; to te» wymaga przerwania wykonywania
przynajmniej jednego aktualnego wywoªania procedury.

Znaczenie instrukcji again, back i exit poza ciaªem procedury mo»e by¢ dowolne. Podobnie,
mo»na nie okre±la¢ znaczenia wywoªa« call P w miejscu, gdzie nie jest widoczna »adna procedura
o nazwie P , ani przypisa« x := e, gdzie zmienna x nie jest dost¦pna.

Zadanie
Zadanie polega na napisaniu semantyki denotacyjnej w stylu kontynuacyjnym dla kategorii

syntaktycznej Inst instrukcji powy»szego j¦zyka oraz semantyki denotacyjnej w wybranym stylu
dla kategorii syntaktycznej Decl. W tym celu nale»y jednoznacznie zde�niowa¢ typy funkcji
semantycznych dla Inst, Decl, oraz Expr wraz ze wszystkimi u»ywanymi typami pomocni-
czymi. Mo»na zaªo»y¢, »e dany jest typ Ans oznaczaj¡cy �nalne wyniki dziaªania programu.
Mo»na pomin¡¢ równania semantyczne dla wyra»e«, ale nale»y poda¢ równania semantyczne dla
wszystkich postaci instrukcji Inst oraz deklaracji Decl w tym j¦zyku.

Mo»na przyj¡¢, »e dany jest niesko«czony zbiór lokacji Loc oraz funkcja matematyczna
newloc : (Loc ⇀fin Num) → Loc speªniaj¡ca newloc(s) /∈ dom(s) dla s : Loc ⇀fin Num (gdzie
Loc ⇀fin Num to zbiór funkcji cz¦±ciowych z Loc do Num, których dziedzina jest sko«czona).

verte!

1

Przykªad Wykonanie poni»szej instrukcji spowoduje w kolejnych liniach kodu:

0: begin var x = 2;

1: proc P { if x > 0 then { back }

2: else { if x + 1 > 0 then { x := x - 1; again }

3: else { x := x - 1 } } }

4: in begin in x := x - 1;

5: call P end;

6: begin var y = 2;

7: proc Q { if x > 0 then { x := x - 1; call Q }

8: else { if y > 0 then { back }

9: else { if y + 1 > 0

10: then { begin in y := y - 1;

11: if y + 2 > 0 then { call Q }

12: else { x := x - 2; exit } }

13: else { back } } } }

14: in x := x + 3;

15: begin var x = 7 in y := y - 1;

16: call Q end;

17: end;

18: call P

19: end

0) Zadeklarowanie zmiennej x0 o warto±ci 2.
1) Zadeklarowanie procedury P , wi¡»¡cej statycznie zmienn¡ x0.
4) Zmniejszenie warto±ci zmiennej x0 do warto±ci 1.
5) Wywoªanie procedury P .
1) Warunek zachodzi; back przerywa wywoªanie P i powoduje skok do instrukcji bloku z linii 4.
4) Zmniejszenie warto±ci zmiennej x0 do warto±ci 0.
5) Drugie wywoªanie procedury P .

1,2) Zachodzi warunek z linii 2; warto±¢ x0 zmniejsza si¦ do−1; again powoduje powrót do pocz¡tku
ciaªa procedury P .

1,2,3) Warunki z linii 1 i 2 nie zachodz¡; warto±¢ x0 zmniejsza si¦ do −2, co ko«czy wywoªanie P .
6) Zadeklarowanie zmiennej y0 o warto±ci 2.
7) Zadeklarowanie procedury Q, wi¡»¡cej statycznie zmienne x0 i y0.

14) Zwi¦kszenie warto±ci x0 do 1.
15,16) Zadeklarowanie zmiennej x1 o warto±ci 7; zmniejszenie y0 do 1; wywoªanie procedury Q.

7) Warunek zachodzi; zmniejszenie x0 do 0; drugie, rekurencyjne wywoªanie Q.
7,8) Zachodzi warunek z linii 8; back powoduje przerwanie wywoªa« Q (obu aktualnych wywoªa«:

rekurencyjnego z linii 7 i zewn¦trznego z linii 16) i skok do instrukcji bloku z linii 15.
15,16) Zmniejszenie y0 do 0, kolejne wywoªanie procedury Q.
7,8,9) Zachodzi warunek z linii 9.

10) Zmniejszenie y0 do −1.
11) Warunek zachodzi; rekurencyjne wywoªanie Q.

7,8,9) �aden z tych warunków nie zachodzi.
13) back powoduje przerwanie rekurencyjnego wywoªania Q i skok do instrukcji bloku z linii 10

(w zewn¦trznym wywoªaniu Q).
10) Zmniejszenie y0 do −2.
11) Warunek nie zachodzi.
12) Zmniejszenie x0 do −2; exit przerywa wywoªanie procedury Q i powoduje skok bezpo±rednio

za blok z linii 6-17.
18) Ponowne wywoªanie procedury P .

1,2,3) Warunki zlinii 1 i 2 nie zachodz¡; zmniejszenie x0 do −3 ko«czy to wywoªanie P , caªej rozwa-
»anej instrukcji (i przykªad).

2

Rozwi¡zanie
Rozwa»my nast¦puj¡ce typy pomocnicze:

Env = Var ⇀ Loc

Store = Var ⇀ Num

Cont = Store ⇀ Ans

PEnv = PName ⇀ Proc

Proc = Cont → Cont → Cont

(back 7→ za 7→ przed)

U»ywa¢ b¦dziemy funkcji semantycznych:

E : Expr → Env → Store ⇀ Num

D : Decl → Cont → (PEnv,Env,Store) ⇀ (PEnv,Env,Store)

(exit 7→ . . .)

I : Inst → PEnv → Env → Cont3 → Cont → Cont ⇀ Cont

(back 7→ za 7→ przed)︷ ︸︸ ︷
(exit (κE), again (κA),back (κB))

Funkcja semantyczna E jest dana, natomiast funkcje D i I zde�niujemy nast¦puj¡co:

D[[ε]] κE (ρP , ρV , s) = (ρP , ρV , s)

D[[var x = e]] κE (ρP , ρV , s) = let q = E [[e]] ρV s in

let ℓ = newloc(s) in

let ρ′V = ρV [x 7→ ℓ] in

let s′ = s[ℓ 7→ q] in(
ρP , ρ

′
V , s

′)
D[[proc P{I}]] κE (ρP , ρV , s) = let rec X = λκB. λκ.

I[[I]] ρP [P 7→ X] ρV (κE, (X κB κ), κB) κB κ in(
ρP [P 7→ X], ρV , s

)
D[[d1; d2]] κE =

(
D[[d1]] κE

)
;
(
D[[d2]] κE

)

3

I[[begin d in I end]] ρP ρV κ⃗ = λκany
B . λκ. λs.

let (ρ′P , ρ
′
V , s

′) = D[[d]] κ (ρP , ρV , s) in

let rec κ′
B = I[[I]] ρ′P ρ′V κ⃗ κ′

B κ in

κ′
B s′

I[[skip]] ρP ρV κ⃗ κ′
B κ = κ

I[[x := e]] ρP ρV κ⃗ κ′
B κ = λs. κ s[ρV (x) 7→ E [[e]] ρV s]

I[[I1; I2]] ρP ρV κ⃗ κ′
B κ = I[[I1]] ρP ρV κ⃗ κ′

B

(
I[[I2]] ρP ρV κ⃗ κ′

B κ
)

I[[if e > 0 then I1 else I2]] ρP ρV κ⃗ κ′
B κ = λs.ifte

(
E [[e]] ρV s > 0,

I[[I1]] ρP ρV κ⃗ κ′
B κ s,

I[[I2]] ρP ρV κ⃗ κ′
B κ s

)
I[[call P]] ρP ρV (κE, κA, κB) κ

′
B κ = ρP P κ′

B κ

I[[again]] ρP ρV (κE, κA, κB) κ
′
B κ = κA

I[[back]] ρP ρV (κE, κA, κB) κ
′
B κ = κB

I[[exit]] ρP ρV (κE, κB, κA) κ
′
B κ = κE

4

