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Egzamin I termin, 26/01/2026, zadanie 2 (wery�kacja)

Pracujemy w j¦zyku TinyA nad typem danych rozszerzonym o jednoargumentow¡ operacj¦ arty-
metyczn¡ _ div2 dzielenia caªkowitego przez 2 oraz o rodzaj Array i operacje:

newarr : Array
put : Array × Int × Int → Array
get : Array × Int → Int
swap : Array × Int × Int → Array

No±nik rodzaju Array to zbiór funkcji (caªkowitych) z liczb caªkowitych w liczby caªkowite,

|A|Array = Int → Int,

a operacje interpretowane s¡ jako funkcje

newarrA : |A|Array

putA : |A|Array × |A|Int × |A|Int → |A|Array

getA : |A|Array × |A|Int → |A|Int
swapA : |A|Array × |A|Int × |A|Int → |A|Array

zde�niowane nast¦puj¡co:

newarrA(i) = 0
putA(A, i, n) = A[i 7→ n]
getA(A, i) = A(i)
swapA(A, i, j) = A[i 7→ A(j), j 7→ A(i)]

dla wszystkich i, j, n ∈ |A|Int = Int i A : Int → Int. Wyra»enie get(A, e) b¦dziemy jak zwykle
zapisywa¢ jako A[e]. Ponadto, w asercjach wykorzystujemy �predykat� A:Array stwierdzajacy,
»e zmienna A jest rodzaju Array (pozostaªe zmienne s¡ rodzaju Int). Wyra»enia logiczne j¦zyka
rozszerzamy te» o oczywiste nierówno±ci e < e′ (wyra»alne jako e ≤ e′ ∧ e ̸= e′) oraz e ≥ e′

(wyra»alne jako e′ ≤ e). Dla czytelno±ci, w formuªach ci¡gi nierówno±ci b¦dziemy zapisywa¢ w
skróconej postaci, np. j ≤ i ∧ i < k zapisuj¡c jako j ≤ i < k.

Poni»ej (na odwrocie) dany jest program w tym j¦zyku.
Do celów specy�kacji wprowadzamy �predykaty� (skróty formuª):

H(A, p, r) ≡ A:Array ∧ ∀l.2 ∗ p ≤ l < r ⇒ A[l div2] ≥ A[l]
S(A, r) ≡ A:Array ∧ ∀l, l′.1 ≤ l < l′ < r ⇒ A[l] ≥ A[l′]

W razie potrzeby podobnie mo»na zde�niowa¢ dodatkowe pomocnicze predykaty.
Nale»y udowodni¢ caªkowit¡ poprawno±¢ programu wzgl¦dem podanych warunków, podaj¡c:

� niezmienniki p¦tli programu oraz asercje po±rednie, które �koduj¡� dowód poprawno±ci cz¦-
±ciowej w logice Hoare'a; wymagane jest podanie niezmienników γ1, γ2, γ3 oraz przynajmniej
asercji α1, α2, α3 (ale podanie innych asercji z bª¦dami mo»e wpªyn¡¢ na ostateczn¡ ocen¦
rozwi¡znia).

� anotacje [decr . . . in . . . wrt . . . ] dla obu p¦tli, tak aby (w kontek±cie podanych niezmien-
ników) wynikaªa z nich wªasno±¢ stopu p¦tli.



[n > 1 ∧H(A, 1, n)]
r := 2;

[ ]

while [γ1: ]

r < n do [ decr wrt in ]

( if 2*r < n then t := 2*r else t := n;

[ ]

m := r;

[ ]

x := A[r];

[ ]

k := r+1;

[ ]

while [γ2: ]

k < t do [ decr wrt in ]

( if A[k] > x then x := A[k]; m := k else skip;

[ ]

k := k+1);

[α1: ]

if m > r then
(A := swap(A,r,m);

[ ]

r := r+1;

[ ]

j := m;

[ ]

while [γ3: ]

2*j < n do [ decr wrt in ]

(k := 2*j;

[α2: ]

if k+1 < n then
if A[j] ≥ A[k] and A[j] ≥ A[k+1] then j := n

else if A[k] ≥ A[k+1]

then (A := swap(A,j,k);

[α3: ]

j := k)

else (A := swap(A,j,k+1);

[ ]

j := k+1)

else if A[j] ≥ A[k] then j := n

else (A := swap(A,j,k);

[ ]

j := k)

)

) else r := r+1

)

[ ]

[S(A, n)]



Przydadz¡ si¦ dodatkowe pomocnicze predykaty:

Hbut(A, p, r, k) ≡ A:Array ∧ (∀l.(2 ∗ p ≤ l < r ∧ k ̸= l div2) ⇒ A[l div2] ≥ A[l])
∧ (2 ∗ p ≤ k ∧ 2 ∗ k < r ⇒ A[k div2] ≥ A[2 ∗ k])
∧ (2 ∗ p ≤ k ∧ 2 ∗ k + 1 < r ⇒ A[k div2] ≥ A[2 ∗ k + 1])

Max (A, p, r, k) ≡ A:Array ∧ p ≤ k < r ∧ ∀l.p ≤ l < r ⇒ A[k] ≥ A[l]

[n > 1 ∧H(A, 1, n)]
r := 2;

while [γ1: 2 ≤ r ≤ n ∧ S(A, r) ∧H(A, r, n) ∧Max (A, r − 1, n, r − 1) ]

r < n do [ decr n− r wrt > in Nat ]

( if 2*r < n then t := 2*r else t := n;

m := r;

x := A[r];

k := r+1;

while [γ2: γ1 ∧ (t = 2 ∗ r ≤ n ∨ t = n ≤ 2 ∗ r) ∧ r < k ≤ t ∧Max (A, r, k,m) ∧ x = A[m] ]

k < t do [ decr t− k wrt > in Nat ]

( if A[k] > x then x := A[k]; m := k else skip;

k := k+1);

[α1: γ1 ∧ (t = 2 ∗ r ≤ n ∨ t = n ≤ 2 ∗ r) ∧Max (A, r, t,m) ]

if m > r then
(A := swap(A,r,m);

r := r+1;

j := m;

while [γ3: 2 < r ≤ n ∧ S(A, r) ∧ Hbut(A, r, n, j) ∧Max (A, r − 1, n, r − 1) ]

2*j < n do [ decr n− j wrt > in Nat ]

(k := 2*j;

[α2: γ3 ∧ k = 2 ∗ j < n ]

if k+1 < n then
if A[j] ≥ A[k] and A[j] ≥ A[k+1] then j := n

else if A[k] ≥ A[k+1]

then (A := swap(A,j,k);

[α3: 2 < r ≤ j ∧ k = 2 ∗ j < n− 1 ∧ Hbut(A, r, n, k) ∧ S(A, r) ∧Max (A, r − 1, n, r − 1) ]

j := k)

else (A := swap(A,j,k+1);

j := k+1)

else if A[j] ≥ A[k] then j := n

else (A := swap(A,j,k);

j := k)

)

) else r := r+1

)

[S(A, n)]


