Semantyka i weryfikacja programéw 2025/26.
Egzamin I termin, 26/01/2026, zadanie 2 (weryfikacja)

Pracujemy w jezyku TINY 4 nad typem danych rozszerzonym o jednoargumentowsa operacje arty-
metyczna  div2 dzielenia catkowitego przez 2 oraz o rodzaj Array i operacje:

newarr: Array

put: Array x Int x Int — Array
get: Array x Int — Int

swap: Array x Int x Int — Array

Nosnik rodzaju Array to zbior funkeji (catkowitych) z liczb catkowitych w liczby catkowite,
| Al Array = Int — Int,
a operacje interpretowane sa jako funkcje

newarr A: |A| array

pUtA: |A|Army X ‘A‘Int X ‘A‘Int — ‘A‘Army
gEt,A: ‘A‘Army X ’A’Int — |~A’Int

swap 4 - ‘A|Army X ’A‘Int X ‘A‘Int — ‘A‘Army

zdefiniowane nastepujaco:

newarr 4(i) = 0

put 4(A,i,n) = Ali — n]

get a(A,i) = A(i)

swap A(A, i, §) = Ali = A(j), 7 — A(D)]

dla wszystkich i,j,n € | Al = Int i A: Int — Int. Wyrazenie get(A,e) bedziemy jak zwykle
zapisywaé jako Ale]. Ponadto, w asercjach wykorzystujemy ,predykat” A:Array stwierdzajacy,
ze zmienna A jest rodzaju Array (pozostate zmienne sg rodzaju Int). Wyrazenia logiczne jezyka
rozszerzamy tez o oczywiste nierownosci e < € (wyrazalne jako e < ¢/ Ne#¢') oraz e > ¢
(wyrazalne jako €' < e). Dla czytelnosci, w formutach ciagi nieréwnosci bedziemy zapisywaé w
skroconej postaci, np. j < i A i < k zapisujac jako j <1 < k.

Ponizej (na odwrocie) dany jest program w tym jezyku.
Do celow specyfikacji wprowadzamy ,predykaty” (skroty formut):

H(A,p,r) = A:Array AVI.2xp < | <r = A[l div2] > A[l]
S(A,r) = A:Array ANVLI1 <1< <r= All] > A[l']

W razie potrzeby podobnie mozna zdefiniowa¢ dodatkowe pomocnicze predykaty.
Nalezy udowodni¢ catkowita poprawnosé programu wzgledem podanych warunkéw, podajac:

e niezmienniki petli programu oraz asercje posrednie, ktore ,koduja’ dowodd poprawnosci cze-
Sciowej w logice Hoare’a; wymagane jest podanie niezmiennikéw vy, 2, 3 oraz przynajmniej
asercji aq, g, ag (ale podanie innych asercji z bledami moze wptyna¢ na ostateczna ocene
rozwiaznia).

e anotacje [decr ...in ...wrt ...] dla obu petli, tak aby (w kontekscie podanych niezmien-
nikow) wynikata z nich wlasnosé stopu petli.



n>1ANH(A 1,n)]

r = 2;
L
while [v;:
r <n do [ decr wrt in ]
(if 2xr < n then t := 2%r else t := n;
[
m:=r;
L
x := Alr];
[
k := r+1;
L
while [vs:
k <t do [ decr wrt in ]
(if A[k] > x then x := A[k]; m := k else skip;
L
k := k+1);
Lo

if m > r then
(A := swap(A,r,m);

L

r = r+l;
[

j = m;
L

while [~v3:

2%xj < n do [ decr wrt in
(k = 2%j;
Lo :
if k+1 < n then
if A[jl > A[k] and A[j] >A[k+1] then j :=n
else if A[k] > A[k+1]
then (A := swap(4,j,k);
[as:
j = k)
else (A := swap(A,j,k+1);
[
j = k+1)
else if A[j] > A[k] then j :=n
else (A := swap(4,j,k);
[
j = k)
)
) else r := r+1
)

[

[S(A, n)]



Przydadza sie dodatkowe pomocnicze predykaty:

Hbut(A,p,r k) = A:Array A (V1.2 p <1 <r Ak #1div2) = A[l div2] > AJl])
ANQRxp<kA2xk <r= Alkdiv2] > A[2 k]
AN2xp<kAN2xk+1<r= Alkdiv2] > A2k +1])

Maz(A,p,r k) = A:Array Ap <k <rAVip <Il<r= Alk] > Al

[n>1AH(A 1,n)]

r = 2;

while [v: 2<r<nAS(Ar)NH(Ar,n) AN Maz(A,r—1,n,r—1) ]
r <ndo [ decr n—7 wrt > in Nat ]

(if 2*r < n then t := 2%r else t := n;
m:=r;

x := Alr];

k := r+1;

while [vo: At =2xr<nVit=n<2xr)Ar <k <tAMax(Ar,k,m)\xz=Alm| ]
k <t do [ decr t —k wrt > in Nat ]
(if A[k] > x then x := A[k]; m := k else skip;
k := k+1);
[ar: mA(E=2xr<nVt=n<2xr)A Max(Artm) ]
if m > r then

(A := swap(A,r,m);
r = r+l;
j 1= m;

while [y3: 2 <r <nAS(A,r) A Hbut(A,r,n,j) AN Max(A,r —1,n,r—1) ]
2¢j <n do [ decr n—j wrt > in Nat ]
(k := 2%j;
[ag: 13Ak=2%j<n ]
if k+1 < n then
if A[j] > A[k] and A[j] >A[k+1] then j := n
else if A[k] > A[k+1]
then (A := swap(A,j,k);
laz: 2<r<jAk=2%xj<n—1AHbwut(Ar,nk)NSAr)AMax(Ar—1,nr—1)1]

j = k)
else (A := swap(4,j,k+1);
j = k+1)

else if A[j] > A[k] then j :=n
else (A := swap(4,j,k);
j = k)

) else r := r+1

[S(A4,n)]



