Universal algebra I

Basics of universal algebra:
e signatures and algebras
e homomorphisms, subalgebras, congruences
e equations and varieties
e equational calculus
e equational specifications and initial algebras
e variations: partial algebras, first-order structures

Plus some hints on applications in

foundations of software semantics, verification, specification, development. . .
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TINY data typeI

Its signature ¥ (syntax): | gorts

opns

and X-algebra A (semantics):

Int, Bool;

0,1: Int;

plus, times, minus: Int X Int — Int;
false, true: Bool;

lteq: Int x Int — Bool;

not: Bool — Bool;

and: Bool x Bool — Bool;

carriers A;,; = Int, Ap,,, = Bool
operations

04=0,14=1

minus 4(n,m) =n —m

false 4 = ff, true 4 = tt

lteqa(n,m) = tt if n < m else ff
not 4(b) = tt if b = T else ff

and 4(b,b") = tt if b=10" = tt else ff

plus 4(n,m) = n + m, times 4(n,m) = n*xm

\
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Signatures I

> = (S,0)

Algebraic signature:

e sort names: S
e operation names, classified by arities and result sorts: = (Qy s)wes* ses

Alternatively:

Y, = (5,9, arity, sort)

with sort names S, operation names €2, and arity and result sort functions
arity: Q — S* and sort: 2 — S.

o fis1 X...X58, — sstands for s1,...,8,,s € S and f € Qg, s, s

Compare the two notions

Andrzej Tarlecki: Semantics & Verification - 219 -



Fix a signature ¥ = (.5, 2) for a while.

Algebras I

A= (4], {fa) req)

e X.-algebra:

o carrier sets: |A| = {|A|s)ses

e operations: fa: |Als, X ... X |Als, — |Als, for f:s1 X ... X8, = s

e the class of all X-algebras:

Alg(Y)

Can Alg(X) be empty? Finite?
Can A € Alg(X) have empty carriers?
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Subalgebras'

o for A € Alg(X), a X-subalgebra Agy, C A is such a Y-algebra Agyp € Alg(X)
such that |Ag| C |A] and

— for f:is1 X ... x 8, > sand a1 € |Asuplsyy--->0n € |Asubls, .
fAsub(a’:l?"’?a’n) — fA(afl,-..7a/n)

(any subalgebra is given by a subset |Az,,| C |A| closed under the operations)

o for A € Alg(X) and X C |A|, the subalgebra of A generated by X, (A)x, is the
least subalgebra of A that contains X.

e Ac Alg(X) is reachable if (A)y coincides with A.
Fact: For any A € Alg(X) and X C |A|, (A)x exists.
Proof (idea):
e generate the generated subalgebra from X by closing it under operations in A; or

e the intersection of any family of subalgebras of A is a subalgebra of A.
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Homomorphisms I

e for A, B € Alg(3), a ¥-homomorphism h: A — B is a function h: |A| — |B|
that preserves the operations:

— for frs1 x...x 8, = sand ay € |[Als,...,a, €|A]s,
hs(fa(ar, ... an)) = fe(hs,(a1), .- hs, (an))

Fact: Given a homomorphism h: A — B and subalgebras A, of A and B, of B,
the image of Agyp, under h, h(Agyup), is a subalgebra of B, and the coimage of By
under h, h™Y(Bgyy), is a subalgebra of A.

Fact: Given a homomorphism h: A — B and X C |A], h({A)x) = (B)n(x)-

Fact: Identity function on the carrier of A € Alg(X) is a homomorphism
ida: A — A. Composition of homomorphisms h: A — B and g: B — C is a
homomorphism h;g: A — C.
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Isomorphisms'

o for A, B € Alg(>), a X-isomorphism is any ¥-homomorphism i: A — B that

has an inverse, i.e., a X-homomorphism i=1: B — A such that i;i~! = id4 and

’I:_l;’l: = 1dp.

e X-algebras are isomorphic if there exists an isomorphism between them.
Fact: A X-homomorphism is a 3-isomorphism iff it is bijective ("1-1"" and “onto”).

Fact: Identities are isomorphisms, and any composition of isomorphisms is an
isomorphism.
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A] that is
closed under the operations:

— for f:s1 X ...x 8, = sanday,a] € |Als,,...,an,a, € |Als,,
if ay =5, al,...,an =, al, then fa(ay,...,a,) =s falay,...,a)).
Fact: For any relation R C |A| x |A| on the carrier of a ¥-algebra A, there exists

the least congruence on A that contains R.

Fact: For any Y-homomorphism h: A — B, the kernel of h, K(h) C |A] x |A
where a K(h) o’ iff h(a) = h(a'), is a 3¥-congruence on A.

7
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Quotients I

o for A € Alg(X) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |A/=|s ={|a]= | a € |A|s}, with [a]l= ={a’ € |Als | a = a’}
— for fis1x...x 8, > sand aj € |Als,...,an € |Als,,

fA/E([a’l]Ea JR) [an]E) — [fA(alv R 7an)]

Fact: The above is well-defined; moreover, the natural map that assigns to every

element its equivalence class is a ¥-homomorphisms | |=: A — A/=.

Fact: Given two X-congruences = and =' on A, = C =’ iff there exists a
Y.-homomorphism h: A/= — A/=' such that [ |=;h = | ]=.

Fact: For any X-homomorphism h: A — B, A/K(h) is isomorphic with h(A).
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Products.

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, 11;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, i € 1:
— fors e S, |H7;EIA?3|S — HieI |Ai’s
— for fisy x...xs, = sanday € |[],c7 Ailsis---san €117 Ails,,. for
1 € I, sz‘eIAi (al, ce ,a,n)(z) = fAi (al(i), ce ,CLn(Z))

Fact: For any family (A;),.; of X-algebras, projections m;(a) = a(i), wherei € T
and a € |[,.7 |Ai|, are ¥-homomorphisms m;: | [,.7 Ai — A;.

Define the product of the empty family of X-algebras.
When the projection 7; is an isomorphism?
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Terms I

Consider an S-sorted set X of variables.
e terms t € |[Tx(X)| are built using variables X, constants and operations from 2
in the usual way: |Tx(X)| is the least set such that
- X ¢ [Ts(X))
— for fis1x...x8, > sand t; € [Tx(X)|syy -, tn € |[T2(X)]s,,
fltr, .o tn) € [To(X)]s

e for any X-algebra A and valuation v: X — |A|, the value t s[v] of a term
t € |Ts(X)| in A under v is determined inductively:

— xalv] =vg(x), forx € X5, s €S

— (f(t1,.- . tn))alv] = fa((t1)alv], ..., (tn)alv]), for f:s1 X ... X s, — s and
11 € |TE(X)|317---7tn c ‘TE(X”sn

Above and in the following: assuming unambiguous “parsing’ of terms!
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx,(X) has the set of terms as the carrier and operations
defined “syntactically™
— for frsy x...xs, = sand t; € [T (X)|sys. -5 tn € |T2(X)]s,,,
ng(X)(tla costn) = f(t1, ..o tn).

Fact: For any S-sorted set X of variables, ¥.-algebra A and valuation v: X — |A]|,

there is a unique YX-homomorphism v¥ : Ts(X) — A that extends v. Moreover, for
t € |Ts(X)|, v7(t) = talv].

x| Ty (X))

X ~ [T (X)) Tx(X)
Set” > 07| Q| Alg(X)
Al A

Andrzej Tarlecki: Semantics & Verification - 228 -



Equaﬁons'

VXt =1t

e Equation:

where:
— X is a set of variables, and

— t,t' € |Ts(X)|s are terms of a common sort.

e Satisfaction relation: Y-algebra A satisfies VX.t =t/

AEvXt=t

when for all v: X — |A|, talv] = t/4]v].
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Semantic entailment I

¢ =5 @

Yi-equation ¢ is a semantic consequence of a set of Y-equations ®

if ¢ holds in every Y-algebra that satisfies ®.

BTW:
e Models of a set of equations: Mod(®) ={A € Alg(X) | A = ¢}
e Theory of a class of algebras: Th(C) = {¢ | C E ¢}
o b=y «— ¢pe Th(Mod(P))

e Mod and Th form a Galois connection
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Equational calculus I

VX.t=1+¢

VX.t=t VX' =t

VXt =t ... VXit,=t,
VX.f(ty...ty) = f(t]...1)

VXt=t VXt =+t
VX.t=1t"

VXt=t
VY.t[6] = t'[0]

for 0: X — |Ts(Y),

Mind the variables!

a = b does not follow from a = f(x) and f(x) = b, unless. ..
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Proof-theoretic entailment.

(I)|—2<,0

Yl-equation @ is a proof-theoretic consequence of a set of ¥-equations ®

if © can be derived from ® by the rules.

How to justify this?

Semantics!
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Soundness & completeness'

Fact: The equational calculus is sound and complete:

PE=p <— PFoyp

e soundness: “all that can be proved, is true” (® = o <= ® F o)

e completeness: “all that is true, can be proved” (& = = ® I ¢)

Proof (idea):

e soundness: easy!

e completeness: not so easy!
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One motivation I

Software systems (data types, modules, programs, databases. .. ):

sets of data with operations on them

e Disregarding: code, efficiency, robustness, reliability, ...

e Focusing on: CORRECTNESS

Universal algebra

from rough analogy: module interface ~ signature
module ~+ algebra

module specification ~ class of algebras
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Equational specifications'

(%, @)

e signature X, to determine the static module interface
e axioms (X-equations), to determine required module properties

BUT:

Fact: A class of Y-algebras is equationally definable iff it is closed under

subalgebras, products and homomorphic images.

Equational specifications typically admit a lot of undesirable “modules”
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Example

spec NAIVENAT = sort Nat
opns 0: Nat;
succ: Nat — Nat;
_+ _: Nat x Nat — Nat
axioms Vn:Nat.n + 0 = n;

Vn, m:Nat.n 4+ succ(m) = succ(n +m)

Now:
NAIVENAT p& Vn,m:Nat.n+m=m+n

Perhaps worse:

There are models M € Mod(NATVENAT) such that M = 0 = succ(0), or even:
M E=Vn,m:Nat.n =m
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How to fix this.

e (Constraints:

initiality: “no junk” & “no confusion”

Also: reachability ("no junk™), and their more general versions (freeness,
generation).

BTW: Constraints can be thought of as special (higher-order) formulae.

e Other (stronger) logical systems: conditional equations, first-order logic,
higher-order logics, other bells-and-whistles

— more about this elsewhere. . . [Institutions! )

There has been a population explosion among logical systems. ..
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Initial models I

Fact: Every equational specification (3, ®) has an initial model: there exists a
Y.-algebra I € Mod(®) such that for every ¥-algebra M € Mod(®) there exists a
unique Y-homomorphism from I to M.

Proof (idea):

e [ is the quotient of the algebra of ground X-terms by the congruence that glues
together all ground terms ¢, such that ® = V0.t = ¢’

e [ is the reachable subalgebra of the product of “all” (up to isomorphism)
reachable algebras in Mod(®).

BTW: This can be generalised to the existence of a free

model of (3, ®) over any (many-sorted) set of data.
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Example

spec NAT = initial { sort Nat
opns 0: Nat;
succ: Nat — Nat;
_+ _: Nat X Nat — Nat
axioms Vn:Nat.n + 0 = n;

Vn, m:Nat.n + succ(m) = succ(n + m)

Now:
NAT =Vn,m:Nat.n+m=m+n
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Try another example

spec NATPRED = sort Nat
succ: Nat — Nat;

pred: Nat — Nat

pred(0) = error;

opns 0: Nat; error: Nat;

axioms Vn:Nat.n + 0 = n;
Vn, m:Nat.n + succ(m) = succ(n + m);
Vn:Nat.pred(succ(n)) =

_+ _: Nat x Nat — Nat;

T

pred(error) = error; succ(error) = error;
Vn:Nat.error +n = error;Vn:Nat.n + error = error

Looks okay. But try to add multiplication:

0% n = 0; succ(m) *n =n+ (m *n);

ETrror x 1 = error;n x error — error

and now everything collapses!
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Partial algebras I

e Algebraic signature Y. as before

e Partial >:-algebra:

A= (4], {fa) req)

as before, but operations fa: |Als; X ... X |Als, — |A|s, for

f:81 X...X 8, =8, may now be partial functions.

CBTW: Constants may be undefined as well.)

e PAlg(X) stands for the class of all partial X-algebras.
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Fix a signature ¥ = (.5, 2) for a while.

Few further notions'

e subalgebra Ay, C A: given by subset |Agz,,| C |A| closed under the operations;
(BTW: at least two other natural notions are possible)

e homomorphism h: A — B: map h: |A| — |B| that preserves definedness and
results of operations; it is strong if in addition it reflects definedness of
operations; (strong) homomorphisms are closed under composition;

(BTW: very interesting alternative: partial map h: |A| — |B| that preserves
results of operations)

e congruence = on A: equivalence = C |A| x |A| closed under the operations
whenever they are defined; it is strong if in addition it reflects definedness of
operations; (strong) congruences are kernels of (strong) homomorphisms;

e quotient algebra A/=: built in the natural way on the equivalence classes of =;
the natural homomorphism from A to A/= is strong if the congruence is strong.
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Formulae I

(Strong) equation: Definedness formula:

VX.def t

VX.t=¢

where X is a set of variables, and ¢t &

as before T5(X)|s is a term

Satisfaction relation

partial X-algebra A satisfies VX.t = ¢/ partial X-algebra A satisfies VX.def t

AEVXtEt AEVX.deft

when for all v: X — |A|, tafv] is de- | when forall v: X — |A|, ta[v] is defined
fined iff ¢4 [v] is defined, and then t4[v] =

ta[v]
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An alternative I

VX.t=+¢

e (Existence) equation:

where:
— X is a set of variables, and

— t,t' € |Ts(X)|s are terms of a common sort.

e Satisfaction relation: ¥-algebra A satisfies VX.t =t/

AEVXt=t

when for all v: X — |A|, ta|v] = t/y[v] — both sides are defined and equal.
BTW:
o VXt =t iff VX.(t =t/ A deft)
o VX.t =t iff YX.(deft & deft') A (deft = t=1)
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Example

spec NATPRED = initial { sort Nat
opns 0: Nat;
succ: Nat — Nat;
_+ _: Nat x Nat — Nat;
pred: Nat —7 Nat
axioms Vn:Nat.n + 0 = n;
Vn, m:Nat.n + succ(m) = succ(n + m);
s

Vn:Nat.pred(succ(n)) =n
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First-order structures.

e First-order signature 3 = (S, I1): algebraic signature (5, 2) plus predicate

names, classified by arities: TI = (IL,,),c5+

e First-order Y.-structure:

consists of:

A = (|A],(fa)req, (pa)pen)

— (5, Q)-algebra (|A], (fa)req)
— predicates (relations): pa C |Als, X ... X |Als,

forp: sy x...xs, (e, pelly. s )

e Str(X) stands for the class of all first-order X-structures.
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Fix a signature ¥ = (.S, 2, IT) for a while.

Few further notions'

e substructure Az, C A: given by subset |Agup| C |A| closed under the operations
and such that the inclusion preserves truth of predicates; the substructure is
closed if the inclusion also preserves falsity of predicates;

e homomorphism h: A — B: map h: |A| — |B]| that preserves the results of
operations and truth of predicates; it is closed if in addition it preserves falsity of
predicates; (closed) homomorphisms are closed under composition;

e congruence = on A: equivalence = C |A| x |A| closed under the operations; it is
closed if in addition it preserves truth (and falsity) of predicates; (closed)
congruences are kernels of (closed) homomorphisms;

e quotient structures A/=: built in the natural way on the equivalence classes of =
so that the natural map from A to A/= is a homomorphism; it is closed if the
congruence is closed.
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Formulae I

e atomic Y.-formulae over set X of variables:
— t=1t' where t,t' € |T50)(X)
— p(tl, .. .tn), where p: sy X ... X 8, t] € |T(S,Q)(X)|81, oty € |T(S,Q)(X)|sn

s, s€S

e X.-formulae contain atomic formulae and are closed under logical connectives and
quantification; Y-sentences are X-formulae with no free variables

e Satisfaction relation defined as usual between Y-structures A and X-sentences ¢

Al

As before, this yields the usual notions of the class of models for a set of sentences,
the semantic consequences of a set of sentences, the theory of a class of models, etc.

Initial (and free) models exist for first-order specifications with universally

quantified conditional atomic formulae, but in general may fail to exist!
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