Universal algebra

Basics of universal algebra:

- signatures and algebras
- homomorphisms, subalgebras, congruences
- equations and varieties
- equational calculus
- equational specifications and initial algebras
- variations: partial algebras, first-order structures

Plus some hints on applications in

foundations of software semantics, verification, specification, development. . .

TINY data type

Its $signature \Sigma$ (syntax):

```
 \begin{array}{ll} \textbf{sorts} & Int, Bool; \\ \textbf{opns} & 0,1 \colon Int; \\ & plus, times, minus \colon Int \times Int \to Int; \\ & false, true \colon Bool; \\ & lteq \colon Int \times Int \to Bool; \\ & not \colon Bool \to Bool; \\ & and \colon Bool \times Bool \to Bool; \\ \end{array}
```

and Σ -algebra \mathcal{A} (semantics):

```
carriers \mathcal{A}_{Int} = \operatorname{Int}, \mathcal{A}_{Bool} = \operatorname{Bool} operations 0_{\mathcal{A}} = 0, 1_{\mathcal{A}} = 1 plus_{\mathcal{A}}(n,m) = n + m, times_{\mathcal{A}}(n,m) = n * m minus_{\mathcal{A}}(n,m) = n - m false_{\mathcal{A}} = \operatorname{ff}, true_{\mathcal{A}} = \operatorname{tt} lteq_{\mathcal{A}}(n,m) = \operatorname{tt} \ \text{if} \ n \leq m \ \text{else} \ \operatorname{ff} not_{\mathcal{A}}(b) = \operatorname{tt} \ \text{if} \ b = \operatorname{ff} \ \text{else} \ \operatorname{ff} and_{\mathcal{A}}(b,b') = \operatorname{tt} \ \text{if} \ b = b' = \operatorname{tt} \ \text{else} \ \operatorname{ff}
```

Signatures

Algebraic signature:

$$\Sigma = (S, \Omega)$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega = \langle \Omega_{w,s} \rangle_{w \in S^*, s \in S}$

Alternatively:

$$\Sigma = (S, \Omega, arity, sort)$$

with sort names S, operation names Ω , and arity and result sort functions $arity: \Omega \to S^*$ and $sort: \Omega \to S$.

• $f: s_1 \times \ldots \times s_n \to s$ stands for $s_1, \ldots, s_n, s \in S$ and $f \in \Omega_{s_1 \ldots s_n, s}$

Compare the two notions

Fix a signature $\Sigma = (S, \Omega)$ for a while.

Algebras

• Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

- carrier sets: $|A| = \langle |A|_s \rangle_{s \in S}$
- operations: $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \to |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$
- the class of all Σ -algebras:

$$\mathbf{Alg}(\Sigma)$$

Can $\mathbf{Alg}(\Sigma)$ be empty? Finite? Can $A \in \mathbf{Alg}(\Sigma)$ have empty carriers?

Subalgebras

• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -subalgebra $A_{sub} \subseteq A$ is such a Σ -algebra $A_{sub} \in \mathbf{Alg}(\Sigma)$ such that $|A_{sub}| \subseteq |A|$ and

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A_{sub}|_{s_1}, \ldots, a_n \in |A_{sub}|_{s_n}$,
$$f_{A_{sub}}(a_1, \ldots, a_n) = f_A(a_1, \ldots, a_n)$$

(any subalgebra is given by a subset $|A_{sub}| \subseteq |A|$ closed under the operations)

- for $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, the subalgebra of A generated by X, $\langle A \rangle_X$, is the least subalgebra of A that contains X.
- $A \in \mathbf{Alg}(\Sigma)$ is reachable if $\langle A \rangle_{\emptyset}$ coincides with A.

Fact: For any $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, $\langle A \rangle_X$ exists.

Proof (idea):

- ullet generate the generated subalgebra from X by closing it under operations in A; or
- the intersection of any family of subalgebras of A is a subalgebra of A.

Homomorphisms

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -homomorphism $h \colon A \to B$ is a function $h \colon |A| \to |B|$ that preserves the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$,
$$h_s(f_A(a_1, \ldots, a_n)) = f_B(h_{s_1}(a_1), \ldots, h_{s_n}(a_n))$$

Fact: Given a homomorphism $h: A \to B$ and subalgebras A_{sub} of A and B_{sub} of B, the image of A_{sub} under h, $h(A_{sub})$, is a subalgebra of B, and the coimage of B_{sub} under h, $h^{-1}(B_{sub})$, is a subalgebra of A.

Fact: Given a homomorphism $h: A \to B$ and $X \subseteq |A|$, $h(\langle A \rangle_X) = \langle B \rangle_{h(X)}$.

Fact: Identity function on the carrier of $A \in \mathbf{Alg}(\Sigma)$ is a homomorphism $id_A : A \to A$. Composition of homomorphisms $h : A \to B$ and $g : B \to C$ is a homomorphism $h : g : A \to C$.

Isomorphisms

- for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -isomorphism is any Σ -homomorphism $i \colon A \to B$ that has an inverse, i.e., a Σ -homomorphism $i^{-1} \colon B \to A$ such that $i \colon i^{-1} = id_A$ and $i^{-1} \colon i = id_B$.
- Σ -algebras are *isomorphic* if there exists an isomorphism between them.

Fact: A Σ -homomorphism is a Σ -isomorphism iff it is bijective ("1-1" and "onto").

Fact: Identities are isomorphisms, and any composition of isomorphisms is an isomorphism.

Congruences

• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -congruence on A is an equivalence $\equiv \subseteq |A| \times |A|$ that is closed under the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$,
if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_s f_A(a_1', \ldots, a_n')$.

Fact: For any relation $R \subseteq |A| \times |A|$ on the carrier of a Σ -algebra A, there exists the least congruence on A that contains R.

Fact: For any Σ -homomorphism $h: A \to B$, the kernel of $h, K(h) \subseteq |A| \times |A|$, where a K(h) a' iff h(a) = h(a'), is a Σ -congruence on A.

Quotients

- for $A \in \mathbf{Alg}(\Sigma)$ and Σ -congruence $\equiv \subseteq |A| \times |A|$ on A, the *quotient algebra* A/\equiv is built in the natural way on the equivalence classes of \equiv :
 - for $s \in S$, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv a'\}$
 - $\text{ for } f\colon s_1\times\ldots\times s_n\to s \text{ and } a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_{A/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}$

Fact: The above is well-defined; moreover, the natural map that assigns to every element its equivalence class is a Σ -homomorphisms $[_]_{\equiv} : A \to A/\equiv$.

Fact: Given two Σ -congruences \equiv and \equiv' on A, $\equiv \subseteq \equiv'$ iff there exists a Σ -homomorphism $h: A/\equiv \to A/\equiv'$ such that $[_]_{\equiv}; h = [_]_{\equiv'}$.

Fact: For any Σ -homomorphism $h: A \to B$, A/K(h) is isomorphic with h(A).

Products

- for $A_i \in \mathbf{Alg}(\Sigma)$, $i \in \mathcal{I}$, the product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i$ is built in the natural way on the Cartesian product of the carriers of A_i , $i \in \mathcal{I}$:
 - for $s \in S$, $|\prod_{i \in \mathcal{I}} A_i|_s = \prod_{i \in \mathcal{I}} |A_i|_s$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $a_1 \in |\prod_{i \in \mathcal{I}} A_i|_{s_1}, \ldots, a_n \in |\prod_{i \in \mathcal{I}} A_i|_{s_n}$, for $i \in \mathcal{I}$, $f_{\prod_{i \in \mathcal{I}} A_i}(a_1, \ldots, a_n)(i) = f_{A_i}(a_1(i), \ldots, a_n(i))$

Fact: For any family $\langle A_i \rangle_{i \in \mathcal{I}}$ of Σ -algebras, projections $\pi_i(a) = a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}} |A_i|$, are Σ -homomorphisms $\pi_i \colon \prod_{i \in \mathcal{I}} A_i \to A_i$.

Define the product of the empty family of Σ -algebras. When the projection π_i is an isomorphism?

Terms

Consider an S-sorted set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Ω in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $-X\subseteq |T_{\Sigma}(X)|$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_{\Sigma}(X)|_{s_1}, \ldots, t_n \in |T_{\Sigma}(X)|_{s_n}$, $f(t_1, \ldots, t_n) \in |T_{\Sigma}(X)|_s$
- for any Σ -algebra A and valuation $v: X \to |A|$, the value $t_A[v]$ of a term $t \in |T_\Sigma(X)|$ in A under v is determined inductively:
 - $-x_A[v] = v_s(x)$, for $x \in X_s$, $s \in S$
 - $(f(t_1, \ldots, t_n))_A[v] = f_A((t_1)_A[v], \ldots, (t_n)_A[v]), \text{ for } f : s_1 \times \ldots \times s_n \to s \text{ and } t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$

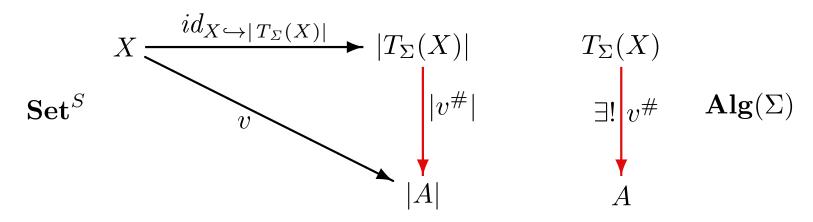
Above and in the following: assuming unambiguous "parsing" of terms!

Term algebras

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f_{T_\Sigma(X)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

Fact: For any S-sorted set X of variables, Σ -algebra A and valuation $v: X \to |A|$, there is a unique Σ -homomorphism $v^{\#}: T_{\Sigma}(X) \to A$ that extends v. Moreover, for $t \in |T_{\Sigma}(X)|$, $v^{\#}(t) = t_{A}[v]$.



Equations

• Equation:

$$\forall X.t = t'$$

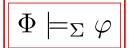
where:

- -X is a set of variables, and
- $-t,t'\in |T_{\Sigma}(X)|_s$ are terms of a common sort.
- Satisfaction relation: Σ -algebra A satisfies $\forall X.t = t'$

$$A \models \forall X.t = t'$$

when for all $v: X \to |A|$, $t_A[v] = t'_A[v]$.

Semantic entailment



 Σ -equation φ is a semantic consequence of a set of Σ -equations Φ if φ holds in every Σ -algebra that satisfies Φ .

BTW:

- *Models* of a set of equations: $Mod(\Phi) = \{A \in \mathbf{Alg}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $Th(\mathcal{C}) = \{ \varphi \mid \mathcal{C} \models \varphi \}$
- $\Phi \models \varphi \iff \varphi \in Th(Mod(\Phi))$
- Mod and Th form a Galois connection

Equational calculus

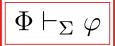
$$\frac{\forall X.t = t'}{\forall X.t = t} \qquad \frac{\forall X.t = t'}{\forall X.t' = t'} \qquad \frac{\forall X.t = t'}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t_1' \dots \forall X.t_n = t_n'}{\forall X.f(t_1 \dots t_n) = f(t_1' \dots t_n')} \qquad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

Mind the variables!

a=b does **not** follow from a=f(x) and f(x)=b, unless...

Proof-theoretic entailment



 Σ -equation φ is a proof-theoretic consequence of a set of Σ -equations Φ if φ can be derived from Φ by the rules.

How to justify this?

Semantics!

Soundness & completeness

Fact: The equational calculus is sound and complete:

$$\Phi \models \varphi \iff \Phi \vdash \varphi$$

- soundness: "all that can be proved, is true" ($\Phi \models \varphi \Longleftarrow \Phi \vdash \varphi$)
- completeness: "all that is true, can be proved" ($\Phi \models \varphi \Longrightarrow \Phi \vdash \varphi$)

Proof (idea):

- soundness: easy!
- completeness: not so easy!

One motivation

Software systems (data types, modules, programs, databases. . .):

sets of data with operations on them

- Disregarding: code, efficiency, robustness, reliability, . . .
- Focusing on: CORRECTNESS

Universal algebra from rough analogy:

module interface → signature

module → algebra

module specification → class of algebras

Equational specifications

 $\langle \Sigma, \Phi \rangle$

- ullet signature Σ , to determine the static module interface
- axioms (Σ -equations), to determine required module properties

BUT:

Fact: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Equational specifications typically admit a lot of undesirable "modules"

Example

$$\begin{array}{c} \mathbf{spec} \ \mathbf{NaiveNat} = \mathbf{sort} \ \mathit{Nat}; \\ \mathbf{opns} \ 0 \colon \mathit{Nat}; \\ \mathit{succ} \colon \mathit{Nat} \to \mathit{Nat}; \\ -+- \colon \mathit{Nat} \times \mathit{Nat} \to \mathit{Nat} \\ \mathbf{axioms} \ \forall n \colon \mathit{Nat}.n + 0 = n; \\ \forall n, m \colon \mathit{Nat}.n + \mathit{succ}(m) = \mathit{succ}(n+m) \end{array}$$

Now:

NaiveNat
$$\not\models \forall n, m : Nat.n + m = m + n$$

Perhaps worse:

There are models $M \in Mod({\tt NAIVENAT})$ such that $M \models 0 = succ(0)$, or even: $M \models \forall n, m : Nat. n = m$

How to fix this

Constraints:

initiality: "no junk" & "no confusion"

Also: reachability ("no junk"), and their more general versions (freeness, generation).

BTW: Constraints can be thought of as special (higher-order) formulae.

- Other (stronger) *logical systems*: conditional equations, first-order logic, higher-order logics, other bells-and-whistles
 - more about this elsewhere. . .

Institutions!

There has been a population explosion among logical systems. . .

Initial models

Fact: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Proof (idea):

- I is the quotient of the algebra of ground Σ -terms by the congruence that glues together all ground terms t, t' such that $\Phi \models \forall \emptyset. t = t'$.
- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $Mod(\Phi)$.

BTW: This can be generalised to the existence of a free model of $\langle \Sigma, \Phi \rangle$ over any (many-sorted) set of data.

BTW: Existence of initial (and free) models carries over to specifications with conditional equations, **but not much further!**

Example

```
\mathbf{spec} \ \ \mathbf{Nat} = \mathbf{initial} \ \{ \ \mathbf{sort} \ \ \mathit{Nat}; \\ \mathbf{opns} \ 0 \colon \mathit{Nat}; \\ \mathit{succ} \colon \mathit{Nat} \to \mathit{Nat}; \\ -+- \colon \mathit{Nat} \times \mathit{Nat} \to \mathit{Nat} \\ \mathbf{axioms} \ \forall n \colon \mathit{Nat}.n + 0 = n; \\ \forall n, m \colon \mathit{Nat}.n + \mathit{succ}(m) = \mathit{succ}(n+m) \\ \}
```

Now:

$$NAT \models \forall n, m: Nat.n + m = m + n$$

Try another example

```
spec NatPred = sort Nat
                       opns 0: Nat; error: Nat;
                              succ: Nat \rightarrow Nat;
                              \_+\_: Nat \times Nat \rightarrow Nat;
                              pred: Nat \rightarrow Nat
                       axioms \forall n: Nat. n + 0 = n;
                                \forall n, m: Nat.n + succ(m) = succ(n+m);
                                \forall n: Nat.pred(succ(n)) = n;
                                 pred(0) = error;
                                 pred(error) = error; succ(error) = error;
                                \forall n: Nat.error + n = error; \forall n: Nat.n + error = error
```

Looks okay. But try to add multiplication:

```
0*n = 0; succ(m)*n = n + (m*n);

error*n = error; n*error = error
```

and now everything collapses!

Partial algebras

- Algebraic signature Σ : as before
- Partial Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

as before, but operations $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \rightharpoonup |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$, may now be *partial functions*.

BTW: Constants may be undefined as well.

• $\mathbf{PAlg}(\Sigma)$ stands for the class of all partial Σ -algebras.

Few further notions

- subalgebra $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations; (BTW: at least two other natural notions are possible)
- homomorphism $h \colon A \to B \colon$ map $h \colon |A| \to |B|$ that preserves definedness and results of operations; it is *strong* if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; (BTW: very interesting alternative: *partial* map $h \colon |A| \to |B|$ that preserves results of operations)
- congruence \equiv on A: equivalence $\equiv \subseteq |A| \times |A|$ closed under the operations whenever they are defined; it is strong if in addition it reflects definedness of operations; (strong) congruences are kernels of (strong) homomorphisms;
- quotient algebra A/\equiv : built in the natural way on the equivalence classes of \equiv ; the natural homomorphism from A to A/\equiv is strong if the congruence is strong.

Formulae

(Strong) equation:

$$\forall X.t \stackrel{s}{=} t'$$

as before

Definedness formula:

 $\forall X.def t$

where X is a set of variables, and $t \in |T_{\Sigma}(X)|_s$ is a term

Satisfaction relation

partial Σ -algebra A satisfies $\forall X.t \stackrel{s}{=} t'$

$$A \models \forall X.t \stackrel{s}{=} t'$$

when for all $v \colon X \to |A|$, $t_A[v]$ is defined iff $t_A'[v]$ is defined, and then $t_A[v] = t_A'[v]$

partial Σ -algebra A satisfies $\forall X.def t$

$$A \models \forall X.def\ t$$

when for all $v: X \to |A|$, $t_A[v]$ is defined

An alternative

• (Existence) equation:

$$\forall X.t \stackrel{e}{=} t'$$

where:

- -X is a set of variables, and
- $-t,t'\in |T_{\Sigma}(X)|_s$ are terms of a common sort.
- Satisfaction relation: Σ -algebra A satisfies $\forall X.t \stackrel{e}{=} t'$

$$A \models \forall X.t \stackrel{e}{=} t'$$

when for all $v: X \to |A|$, $t_A[v] = t'_A[v]$ — both sides are defined and equal.

BTW:

- $\forall X.t \stackrel{e}{=} t' \text{ iff } \forall X.(t \stackrel{s}{=} t' \land def t)$
- $\forall X.t \stackrel{s}{=} t' \text{ iff } \forall X.(def t \iff def t') \land (def t \implies t \stackrel{e}{=} t')$

Example

```
spec NatPred = initial \{ sort Nat
                                    opns 0: Nat;
                                           succ: Nat \rightarrow Nat;
                                           \_+\_: Nat \times Nat \rightarrow Nat;
                                           pred: Nat \rightarrow ? Nat
                                    axioms \forall n: Nat. n + 0 = n;
                                              \forall n, m : Nat.n + succ(m) = succ(n + m);
                                              \forall n: Nat.pred(succ(n)) \stackrel{s}{=} n
```

First-order structures

- First-order signature $\Sigma = (S, \Omega, \Pi)$: algebraic signature (S, Ω) plus predicate names, classified by arities: $\Pi = \langle \Pi_w \rangle_{w \in S^*}$
- First-order Σ -structure:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega}, \langle p_A \rangle_{p \in \Pi})$$

consists of:

- (S,Ω) -algebra $(|A|,\langle f_A\rangle_{f\in\Omega})$
- predicates (relations): $p_A \subseteq |A|_{s_1} \times \ldots \times |A|_{s_n}$, for $p: s_1 \times \ldots \times s_n$ (i.e., $p \in \Pi_{s_1 \ldots s_n}$)
- $\mathbf{Str}(\Sigma)$ stands for the class of all first-order Σ -structures.

Few further notions

- substructure $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations and such that the inclusion preserves truth of predicates; the substructure is closed if the inclusion also preserves falsity of predicates;
- homomorphism $h: A \to B$: map $h: |A| \to |B|$ that preserves the results of operations and truth of predicates; it is *closed* if in addition it preserves falsity of predicates; (closed) homomorphisms are closed under composition;
- congruence \equiv on A: equivalence $\equiv \subseteq |A| \times |A|$ closed under the operations; it is closed if in addition it preserves truth (and falsity) of predicates; (closed) congruences are kernels of (closed) homomorphisms;
- quotient structures A/\equiv : built in the natural way on the equivalence classes of \equiv so that the natural map from A to A/\equiv is a homomorphism; it is closed if the congruence is closed.

Formulae

- atomic Σ -formulae over set X of variables:
 - -t=t', where $t,t'\in |T_{(S,\Omega)}(X)|_s$, $s\in S$
 - $p(t_1, \ldots t_n)$, where $p: s_1 \times \ldots \times s_n$, $t_1 \in |T_{(S,\Omega)}(X)|_{s_1}$, $\ldots t_n \in |T_{(S,\Omega)}(X)|_{s_n}$
- Σ -formulae contain atomic formulae and are closed under logical connectives and quantification; Σ -sentences are Σ -formulae with no free variables
- Satisfaction relation defined as usual between Σ -structures A and Σ -sentences φ

$$A \models \varphi$$

As before, this yields the usual notions of the *class of models* for a set of sentences, the *semantic consequences* of a set of sentences, the *theory* of a class of models, etc.

Initial (and free) models exist for first-order specifications with universally quantified conditional atomic formulae, *but in general may fail to exist!*