
Complete partial orders

An (ω-chain-)complete partial order , cpo:

D = ⟨D,⊑,⊥⟩

• ⊑ ⊆ D ×D is a partial order on D such that each countable chain

d0 ⊑ d1 ⊑ . . . ⊑ di ⊑ . . . has the least upper bound
⊔

i>0 di in D

• ⊥ ∈ D is the least element w.r.t. ⊑

BTW: Equivalently: all countable directed subsets of D have lub's in D.

(∆ ⊆ D is directed if for every x, y ∈ ∆, there is d ∈ ∆ with x ⊑ d and y ⊑ d.)

BTW: It is not equivalent to require that all chains have lub's in D.

(C ⊆ D is a chain if for every x, y ∈ C, x ⊑ y or y ⊑ x.)

But it is equivalent to require that all countable chains have lub's in D.

Andrzej Tarlecki: Semantics & Veri�cation - 174 -

Examples

Examples Non-examples Comments

⟨P(X),⊆, ∅⟩ ⟨Pfin(X),⊆, ∅⟩ P(X) is the set of all subsets,

and Pfin(X) of all �nite subsets of X

⟨X ⇀ Y,⊆, ∅X⇀Y ⟩ ⟨X → Y,⊆, ???⟩ partial and total function spaces

⟨Nat∞,≤, 0⟩ ⟨Nat,≤, 0⟩ Nat∞ = Nat ∪ {ω};
n ≤ ω, for all n ∈ Nat

⟨(R+)∞,≤, 0⟩ ⟨(Q+)∞,≤, 0⟩ non-negative reals R+ and rationals Q+

with �in�nity�

⟨(R+)≤a,≤, 0⟩ ⟨(Q+)≤a,≤, 0⟩ their bounded versions

⟨A≤ω,⊑, ε⟩ ⟨A∗,⊑, ε⟩ A≤ω = A∗ ∪Aω (�nite and in�nite

strings of elements from A, including the

empty string ε); ⊑ is the pre�x ordering

Andrzej Tarlecki: Semantics & Veri�cation - 175 -

Continuous functions

Given cpo's D = ⟨D,⊑,⊥⟩ and D′ = ⟨D′,⊑′,⊥′⟩, a function f : D → D′ is

• monotone if it preserves the ordering, i.e., for all d1, d2 ∈ D,

d1 ⊑ d2 implies f(d1) ⊑′ f(d2)

• continuous if it preserves lub's of all countable chains, i.e., for each chain

d0 ⊑ d1 ⊑ · · · in D,

f(
⊔

i≥0 di) =
⊔

i≥0 f(di)

• strict if it preserves the least element, i.e.,

f(⊥) = ⊥′

BTW: Continuous functions are monotone; in general they need not be strict.

BTW: Monotone functions in general need not be continuous.

Andrzej Tarlecki: Semantics & Veri�cation - 176 -

Some intuition?

Topology

Given a cpo D = ⟨D,⊑,⊥⟩, de�ne a set X ⊆ D to be open if

− if d1 ∈ X and d1 ⊑ d2 then d2 ∈ X

− if d0 ⊑ d1 ⊑ · · · is such that
⊔

i≥0 di ∈ X then di ∈ X for some i ≥ 0.

This de�nes a topology on D:

− ∅ and D are open

− intersection of two open sets is open

− union of any family of open sets is open

Given two cpo's D = ⟨D,⊑,⊥⟩ and D′ = ⟨D′,⊑′,⊥′⟩, a function f : D → D′ is

continuous if and only if it is continuous in the topological sense, i.e., for X ′ ⊆ D′

open in D′, its co-image w.r.t. f , f−1(X ′) ⊆ D is open in D.

Andrzej Tarlecki: Semantics & Veri�cation - 177 -

More intuition?

Information theory

Think of a cpo D = ⟨D,⊑,⊥⟩ as an �information space�.

− if d1 ⊑ d2 then d2 represents �more information� than d1; ⊥ is �no information�

− directed sets represent consistent sets of �information pieces�; their lub's represent

�information� that can be derived from the �informations� in the set

− a function is monotone if it yields more information when given more information

− a function is continuous if it deals with information �bit-by-bit�

�
�

�

�
 �	very informal

For a set of elements X, consider the cpo ⟨P(X),⊇, X⟩ of �informations� about

the elements in X (a set I ⊆ X represents the property � information � that

holds for all the elements in I, and only for those elements).

Andrzej Tarlecki: Semantics & Veri�cation - 178 -

Best intuition?

Partial functions

⟨X ⇀ Y,⊆, ∅X⇀Y ⟩

− ∅X⇀Y is nowhere de�ned

− given two partial functions f, g : X ⇀ Y , f ⊆ g if g is more de�ned than f , but

when f is de�ned, g yields the same result

− given a directed set of partial functions F ⊆ X ⇀ Y , no two functions in F yield

di�erent results for the same argument; then
⊔

F =
⋃

F , which is a partial

function in X ⇀ Y

− a function F : (X ⇀ Y) → (X ′ ⇀ Y ′) is continuous, if F (f)(x′) (for f : X ⇀ Y

and x′ ∈ X ′) depends only on a �nite number of applications of f to arguments

in X. Typical non-continuous functions:
�
�

�

�
 �	this is quite informal !

testing de�nedness, checking in�nitely many values, . . .

Andrzej Tarlecki: Semantics & Veri�cation - 179 -

Fixed-point theorem

Fact: Given a cpo D = ⟨D,⊑,⊥⟩ and a continuous function f : D → D, there

exists the least �xed-point fix (f) ∈ D of f , i.e.,

• f(fix (f)) = fix (f)
fix () : [D → D] → D• if f(d) = d for some d ∈ D then fix (f) ⊑ d

Proof:

De�ne f0(⊥) = ⊥, and f i+1(⊥) = f(f i(⊥)) for i ≥ 0. This yields a chain:

f0(⊥) ⊑ f1(⊥) ⊑ · · · ⊑ f i(⊥) ⊑ f i+1(⊥) ⊑ · · ·
Put:

fix (f) =
⊔

i≥0 f
i(⊥)

• f(fix (f)) = f(
⊔

i≥0 f
i(⊥)) = ⊥ ⊔

⊔
i≥0 f(f

i(⊥)) =
⊔

i≥0 f
i(⊥) = fix (f)

• Suppose f(d) = d for some d ∈ D; then f i(⊥) ⊑ d for i ≥ 0. Thus

fix (f) =
⊔

i≥0 f
i(⊥) ⊑ d.

Andrzej Tarlecki: Semantics & Veri�cation - 180 -

Proof techniques

Given a cpo D = ⟨D,⊑,⊥⟩ and a continuous function f : D → D:

Fact: For any d ∈ D, if f(d) ⊑ d then fix (f) ⊑ d.

Fixed-point induction

A property P ⊆ D is admissible if it is preserved by lub's of all countable chains: for

any chain d0 ⊑ d1 ⊑ · · · , if di ∈ P for all i ≥ 0 then also
⊔

i≥0 di ∈ P , and ⊥ ∈ P .

Fact: For any admissible P ⊆ D that is closed under f (i.e., if d ∈ P then f(d) ∈ P)

fix (f) ∈ P

Andrzej Tarlecki: Semantics & Veri�cation - 181 -

Semantics of while

Recall the (original direct) semantic clause for while:

S[[while b do S]] = fix (Φ)

where Φ: STMT → STMT is given by Φ(F) = cond(B[[b]],S[[S]];F, idState).

Is STMT a cpo?

Is Φ continuous?

In this case we can easily check that indeed ⟨STMT,⊆, ∅State⇀State⟩ is a cpo and

Φ: STMT → STMT is continuous.

BUT: we do not want to have to check this

each time we use a �xed-point de�nition!

Andrzej Tarlecki: Semantics & Veri�cation - 182 -

Domain constructors

Basic domains

For any set X, X⊥ = ⟨X⊥,⊑,⊥⟩ is a �at cpo, where X⊥ = X ∪ {⊥}, ⊥ is a new

element, ⊥ ⊑ x for all x ∈ X and otherwise ⊑ is trivial.

{∗}⊥:
∗

⊥

Bool⊥:
tt ff

⊥@
@

�
�

Int⊥:
· · · −n · · · −1 0 1 · · · n · · ·

⊥
@

@
�
�· · ·· · ·

PPPPPPPP

��������

· · ·· · ·

Fact: Every monotone function de�ned on a �at cpo is continuous.

Andrzej Tarlecki: Semantics & Veri�cation - 183 -

For any cpo's D1 = ⟨D1,⊑1,⊥1⟩ and D2 = ⟨D2,⊑2,⊥2⟩:

Product

Product of D1 and D2 is the following cpo:

D1 ×D2 = ⟨D1 ×D2,⊑, ⟨⊥1,⊥2⟩⟩

where for all d1, d
′
1 ∈ D1 and d2, d

′
2 ∈ D2, ⟨d1, d2⟩ ⊑ ⟨d′1, d′2⟩ if d1 ⊑1 d′1 and

d2 ⊑2 d′2.

Sum

⊥

⊥1 ⊥2

D1 D2
@

@
@

@
�
�

�
�

Q
Q

�
�

.

Disjoint sum of D1 and D2 is the following cpo:

D1 +D2 = ⟨(D1 × {1}) ∪ (D2 × {2}) ∪ {⊥},⊑,⊥⟩

where for d1, d
′
1 ∈ D1, ⟨d1, 1⟩ ⊑ ⟨d′1, 1⟩ if d1 ⊑1 d′1, for d2, d

′
2 ∈ D2, ⟨d2, 2⟩ ⊑ ⟨d′2, 2⟩

if d2 ⊑2 d′2, and for d1 ∈ D1, d2 ∈ D2, ⊥ ⊑ ⟨d1, 1⟩ and ⊥ ⊑ ⟨d2, 2⟩.

Andrzej Tarlecki: Semantics & Veri�cation - 184 -

To avoid proliferation of bottoms:

Smashed product

Smashed product of D1 and D2 is the following cpo:

D1 ⊗D2 = ⟨(D1 \ {⊥1})× (D2 \ {⊥2}) ∪ {⊥},⊑,⊥⟩

where for all non-bottom d1, d
′
1 ∈ D1 and d2, d

′
2 ∈ D2, ⟨d1, d2⟩ ⊑ ⟨d′1, d′2⟩ if d1 ⊑1 d′1

and d2 ⊑2 d′2, and ⊥ ⊑ ⟨d1, d2⟩.

Smashed sum

⊥

D1 D2

@
@

@
@

�
�

�
�

C
C
C
C

�
�
�
�

.

Smashed sum of D1 and D2 is the following cpo:

D1 ⊕D2 = ⟨((D1 \ {⊥1})× {1}) ∪ ((D2 \ {⊥2})× {2}) ∪ {⊥},⊑,⊥⟩

where for all non-bottom d1, d
′
1 ∈ D1, ⟨d1, 1⟩ ⊑ ⟨d′1, 1⟩ if d1 ⊑1 d′1, for d2, d

′
2 ∈ D2,

⟨d2, 2⟩ ⊑ ⟨d′2, 2⟩ if d2 ⊑2 d′2, and ⊥ ⊑ ⟨d1, 1⟩ and ⊥ ⊑ ⟨d2, 2⟩.

Andrzej Tarlecki: Semantics & Veri�cation - 185 -

Function spaces

Continuous-function space from D1 to D2 is the following cpo:

[D1 → D2] = ⟨[D1 → D2],⊑,⊥⟩

where

− [D1 → D2] is the set of all continuous functions from D1 to D2

− for functions f, g : D1 → D2, f ⊑ g if for each d1 ∈ D1, f(d1) ⊑2 g(d1)

− ⊥(d1) = ⊥2 for each d1 ∈ D1.

⊑ does not depend on the ordering on D1

For any set X, function space from X to D2 is the following cpo:

(X → D2) = ⟨X → D2,⊑,⊥⟩

where X → D2 is the set of total functions from X to D2 ordered by ⊑ as above.

Andrzej Tarlecki: Semantics & Veri�cation - 186 -

Domain isomorphism

Cpo's D1 and D2 are isomorphic

D1
∼= D2

if there is a bijection between D1 and D2 which preserves and re�ects the ordering.

Examples:
Bool⊥ ∼= {∗}⊥ ⊕ {∗}⊥

⟨X ⇀ Y,⊆, ∅X⇀Y ⟩ ∼= ⟨X → Y⊥,⊑,⊥⟩

Consider semantic domains up to isomorphism only

So, we can forget

(boolean values and)

partial functions !

�
�

�
�

Forgeting natural numbers is more di�cult

� but possible as well

Andrzej Tarlecki: Semantics & Veri�cation - 187 -

BTW:

Informally:

− D⊗D′ admits only �strict� (de�ned) elements in the pairs

− D×D′ admits both �strict� and �unde�ned� (�unknown�) elements in the pairs

− D⊥ makes all elements in D �strict�

Hence:

(D×D′)⊥ ∼= D⊥ ⊗D′
⊥

D+D′ ∼= D⊥ ⊕D′
⊥

We also de�ne:

D⊗L D′ ∼= D⊗D′
⊥

De�ne: D⊕L D′, D⊗R D′, D⊕R D′ �
�

�
�

ad
m
itt
in
g
pa
irs
wi
th
�s
tri
ct
�
1s
t e
lem

en
ts

(a
nd
2n
d
ele
m
en
ts
�s
tri
ct
�
or
�u
de
�n
ed
�)

Andrzej Tarlecki: Semantics & Veri�cation - 188 -

Building continuous functions

• Every constant function is continuous

• Partial functions on sets, as used so far, can be replaced by (strict) continuous

functions between �at domains; for instance, with a bit of abuse of notation:

− ifteD ∈ [Bool⊥ ×D×D → D] is given by:

ifteD(c, d, d′) =

ifteD(c, d, d′) if c ̸= ⊥
⊥D if c = ⊥

− + ∈ [Int⊥ × Int⊥ → Int⊥] is given by:

n+ n′ =

n+ n′ if n ̸= ⊥ and n′ ̸= ⊥
⊥ if n = ⊥ or n′ = ⊥

Andrzej Tarlecki: Semantics & Veri�cation - 189 -

More constructs

• function composition: ; ∈ [[D1 → D2]× [D2 → D3] → [D1 → D3]], i.e.:

− composition of continuous functions is continuous

− the composition function is continuous

• indexing:

liftI ∈ [[D1 × . . .×Dn → D] → [[I → D1]× . . .× [I → Dn] → [I → D]]], i.e.:

− indexing a continuous function yields a continuous function

− the indexing function is continuous

• Given a function f : D1 × . . .×Dn → D, f is a continuous function from the

product domain D1 × . . .×Dn to D if and only if it is continuous w.r.t. each

argument separately

− this justi�es the use of lambda-notation to build continuous functions:

Λ ∈ [[D0 ×D1 × . . .×Dn → D] → [D1 × . . .×Dn → [D0 → D]]]

Andrzej Tarlecki: Semantics & Veri�cation - 190 -

. . . and more

• continuous-function application is continuous: () ∈ [[D1 → D2]×D1 → D2]

• projections: π1 ∈ [D1 ×D2 → D1] and π2 ∈ [D1 ×D2 → D2]

• (two-argument pairing, but how to write this sensibly?)

• injections: ι1 ∈ [D1 → D1 +D2] and ι2 ∈ [D2 → D1 +D2],

• domain checks: is_in1 ∈ [D1 +D2 → Bool⊥] and

is_in2 ∈ [D1 +D2 → Bool⊥]

'

&

$

%

'

&

$

%
also

their

smashed

versions

• function pairing: ⟨ , ⟩ : [[D → D1]× [D → D2] → [D → D1 ×D2]], where for

f ∈ [D → D1] and g ∈ [D → D2], ⟨f, g⟩ = λd:D.⟨f(d), g(d)⟩.

• function sum: [,] : [[D1 → D]× [D2 → D] → [D1 +D2 → D]], where for

f ∈ [D1 → D] and g ∈ [D2 → D], [f, g](d) = ifteD(is_in1 (d), f(d), g(d))

Andrzej Tarlecki: Semantics & Veri�cation - 191 -

• the least �xed-point operation fix () ∈ [[D → D] → D]

− for D = [D1 → D2], it follows that the least �xed-point of a continuous

function on continuous functions is a continuous function. . .

Enough is enough. . .

Not all functions are continuous. . . Enough functions are continuous. . .

Andrzej Tarlecki: Semantics & Veri�cation - 192 -

Fixed-point equations

Elements of cpo's d1 ∈ D1, . . . , dn ∈ Dn can be de�ned by writing (sets of)

�xed-point equations

d1 = Φ1(d1, . . . , dn)

· · ·
dn = Φn(d1, . . . , dn)

where Φ1 ∈ [D1 × . . .×Dn → D1], . . . , Φn ∈ [D1 × . . .×Dn → Dn].

This de�nes ⟨d1, . . . , dn⟩ as the least �xed-point of

⟨Φ1, . . . ,Φn⟩ ∈ [D1 × . . .×Dn → D1 × . . .×Dn]

The continuous functions used in such de�nitions may be build using the basic

functions and the ways of their composition as discussed so far.

Andrzej Tarlecki: Semantics & Veri�cation - 193 -

Domain equations

Int = {0, 1,−1, 2,−2, . . .}⊥
Bool = {tt,ff}⊥
State = Var → Int

EXP = [State → Int]

BEXP = [State → Bool]

STMT = [State → State]

BTW: Int?? = Int⊕ {??}⊥
Bool?? = Bool⊕ {??}⊥

'

&

$

%

'

&

$

%
No problem!

Just use the operators to build cpo's

as discussed above

If de�nitions of domains turn out to be recursive,

use the successive approximation technique,

as above for domain elements

Andrzej Tarlecki: Semantics & Veri�cation - 194 -

Recursive domain equations

Stream = A⊥ ⊗L Stream

Stream0 = {⊥}
�
�

�
�

Stream = (A⊥ ⊗L Stream)⊕ {eof}⊥
adds eof , ⟨a1, eof⟩, ⟨a1, ⟨a2, eof⟩⟩, . . .Stream1 = {⊥ ⊑ ⟨a1,⊥⟩}

Stream2 = {⊥ ⊑ ⟨a1,⊥⟩ ⊑ ⟨a1, ⟨a2,⊥⟩⟩}
· · ·

Streamn = {⊥ ⊑ ⟨a1,⊥⟩ ⊑ ⟨a1, ⟨a2,⊥⟩⟩ ⊑ · · · ⊑ ⟨a1, ⟨a2, ⟨. . . , ⟨an,⊥⟩ . . .⟩⟩⟩}
· · ·

Stream =
⊔

n≥0 Stream
n

= {⊥ ⊑ ⟨a1,⊥⟩ ⊑ ⟨a1, ⟨a2,⊥⟩⟩ ⊑ · · · ⊑ ⟨a1, ⟨a2, ⟨. . . , ⟨an,⊥⟩ . . .⟩⟩⟩
⊑ · · · ⊑ ⟨a1, ⟨a2, ⟨. . . , ⟨an, ⟨. . .⟩⟩ . . .⟩⟩⟩}

where all a1, a2, . . . , an, . . . ∈ A.

Andrzej Tarlecki: Semantics & Veri�cation - 195 -

Recursive domain equations

Stream = A⊥ ⊗L Stream

Stream0 = {⊥}
�
�

�
�

Stream = (A⊥ ⊗L Stream)⊕ {eof}⊥
adds eof , ⟨a1, eof⟩, ⟨a1, a2, eof⟩, . . .Stream1 = {⊥ ⊑ ⟨a1,⊥⟩}

Stream2 = {⊥ ⊑ ⟨a1,⊥⟩ ⊑ ⟨a1, a2,⊥⟩}
· · ·

Streamn = {⊥ ⊑ ⟨a1,⊥⟩ ⊑ ⟨a1, a2,⊥⟩ ⊑ · · · ⊑ ⟨a1, a2, . . . , an,⊥⟩}
· · ·

Stream =
⊔

n≥0 Stream
n =

{⊥ ⊑ ⟨a1,⊥⟩ ⊑ ⟨a1, a2,⊥⟩ ⊑ · · · ⊑ ⟨a1, a2, . . . , an,⊥⟩ ⊑ · · · ⊑ ⟨a1, a2, . . . , an, . . .⟩}

where all a1, a2, . . . , an, . . . ∈ A.

Andrzej Tarlecki: Semantics & Veri�cation - 196 -

Problems?

If de�nitions of domains turn out to be recursive,

use the successive approximation technique,

as above for domain elements

Really?

No problem?

Suppose we want to add (parameterless) procedures, which are named statements to

be stored in states and used in call statements:

State = Var → VAL VAL = Int+PROC PROC = [State → State]

Do such domains exist?

Andrzej Tarlecki: Semantics & Veri�cation - 197 -

Re�exive domains

There is no (non-trivial) set that satis�es

�
� �

�

same trouble already with

D ∼= D → Bool⊥D ∼= D → D

Yet, any form of self-application (untyped procedure parameters, dynamic binding,

etc) requires a semantic domain of this or similar form.

Models for untyped λ-calculus

In particular, this is necessary to model untyped λ-calculus, a formal untyped calculus

where every term may be applied to any argument.�
�

�
�

History, late 60s, 70s:
• Dana Scott (PRG/Oxford), 1971, 1976
• then others: Plotkin, Smyth, Stoy . . .

Andrzej Tarlecki: Semantics & Veri�cation - 198 -

Good naive solution

Naive denotational semantics

• Use standard set-theoretic domain constructors

• Never use �heavy� recursion, as involved in the re�exive domain de�nition.

• Use naive set-theoretic approximations and set-theoretic unions to solve domain

equations.

• This works for well-typed langauges with a hierarchy of concepts and domains.

Andrzej Tarlecki: Semantics & Veri�cation - 199 -

Solution

Scott-ery

• Limit the size of domains: require countable basis plus some technical conditions

• Use continuous functions only

• De�ne �domain of all domains� where all such domains can be interpreted

• De�ne continuous functions on this domain to interpret each of the domain

constructors

• Write and solve domain equations as �xed-point equations in this domain

Models: Pω, Tω, information systems, . . .

Andrzej Tarlecki: Semantics & Veri�cation - 200 -

