
Program correctness and veri�cation

Programs should be:

• clear; e�cient; robust; reliable; user friendly; well documented; . . .

• but �rst of all, CORRECT

• don't forget though: also, executable. . .

Correctness#
"

!

�
�

�
�

Program correctness makes sense only

w.r.t. a precise speci�cation of the requirements.

Andrzej Tarlecki: Semantics & Veri�cation - 137 -

De�ning correctness

We need:

• A formal de�nition of the programs in use

syntax and semantics of the programming language

• A formal de�nition of the speci�cations in use

syntax and semantics of the speci�cation formalism

• A formal de�nition of the notion of correctness to be used

what does it mean for a program to satisfy a speci�cation

Andrzej Tarlecki: Semantics & Veri�cation - 138 -

Proving correctness

We need:

• A formal system to prove correctness of programs w.r.t. speci�cations

a logical calculus to prove judgments of program correctness

• A (meta-)proof that the logic proves only true correctness judgements

soundness of the logical calculus

• A (meta-)proof that the logic proves all true correctness judgements

completeness of the logical calculus�
�

�

�
 �	under acceptable technical conditions

Andrzej Tarlecki: Semantics & Veri�cation - 139 -

A speci�ed program

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do

(rt := rt + 1; sqr := sqr + 2 ∗ rt + 1)

{rt2 ≤ n < (rt + 1)2}

If we start with a non-negative n, and execute the program successfully,

then we end up with rt holding the integer square root of n

Andrzej Tarlecki: Semantics & Veri�cation - 140 -

Hoare's logic

'

&

$

%

History:

• Turing 1949

• 1960's:

McCarthy, Naur, Floyd

• Hoare 1969

• many others to follow

(see: Apt 1981)

Correctness judgements:

{φ}S {ψ}

• S is a statement of Tiny

• the precondition φ and the postcondition ψ are �rst-order formulae with variables

in Var

Intended meaning:

�
�

�
�

�
�

�
�

Partial correctness:

termination not guaranteed!

Whenever the program S starts in a state satisfying the precondtion φ

and terminates successfully, then the �nal state satis�es the postcondition ψ

Andrzej Tarlecki: Semantics & Veri�cation - 141 -

Formal de�nition

Recall the simplest semantics of Tiny, with S : Stmt → State⇀ State

We add now a new syntactic category:

φ ∈ Form ::= b | φ1 ∧ φ2 | φ1 ⇒ φ2 | ¬φ′ | ∃x.φ′ | ∀x.φ′

with the corresponding semantic function:

F : Form → State → Bool

and standard semantic clauses.�
�

�
�

�
�

�
�

Also, the usual de�nitions of free variables of a formula

and substitution of an expression for a variable

Andrzej Tarlecki: Semantics & Veri�cation - 142 -

More notation

For φ ∈ Form:

{φ} = {s ∈ State | F [[φ]] s = tt}

For S ∈ Stmt, A ⊆ State:

A [[S]] = {s ∈ State | S[[S]] a = s, for some a ∈ A}

Andrzej Tarlecki: Semantics & Veri�cation - 143 -

Hoare's logic: semantics

|= {φ}S {ψ}
iff

{φ} [[S]] ⊆ {ψ}

�
�

�

�
 �	Spelling this out:

The partial correctness judgement {φ}S {ψ} holds, written |= {φ}S {ψ},
if for all states s ∈ State

if F [[φ]] s = tt and S[[S]] s ∈ State

then F [[ψ]] (S[[S]] s) = tt

Andrzej Tarlecki: Semantics & Veri�cation - 144 -

Hoare's logic: proof rules

{φ[x 7→ e]}x := e {φ}

{φ}S1 {θ} {θ}S2 {ψ}
{φ}S1;S2 {ψ}

{φ ∧ b}S {φ}
{φ}while b do S {φ ∧ ¬b}

{φ} skip {φ}

{φ ∧ b}S1 {ψ} {φ ∧ ¬b}S2 {ψ}
{φ} if b then S1 else S2 {ψ}

φ′ ⇒ φ {φ}S {ψ} ψ⇒ ψ′

{φ′}S {ψ′}

Andrzej Tarlecki: Semantics & Veri�cation - 145 -

Example of a proof

We will prove the following partial correctness judgement:

{n ≥ 0}
rt := 0;

sqr := 1;

while sqr ≤ n do

rt := rt + 1;

sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

�
�

�
�

�
�

�
�

Consequence rule will be used implicitly

to replace assertions by equivalent ones of a simpler form

Andrzej Tarlecki: Semantics & Veri�cation - 146 -

Step by step �
�

�
�{φ[x 7→ e]}x := e {φ}�

�
�
�

an instance of the assignment rule:

{n ≥ 0 ∧ 0 = 0} rt := 0 {n ≥ 0 ∧ rt = 0}• {n ≥ 0} rt := 0 {n ≥ 0 ∧ rt = 0}

• {n ≥ 0 ∧ rt = 0} sqr := 1 {n ≥ 0 ∧ rt = 0 ∧ sqr = 1}

• {n ≥ 0} rt := 0; sqr := 1 {n ≥ 0 ∧ rt = 0 ∧ sqr = 1}
�
�

�
�{φ}S1 {θ} {θ}S2 {ψ}

{φ}S1;S2 {ψ}

• {n ≥ 0} rt := 0; sqr := 1 {sqr = (rt + 1)2 ∧ rt2 ≤ n}'

&

$

%

#
"

!

EUREKA!!!

We have just invented

the loop invariant

#
"

!

BTW: another version of the assignment rule:

{φ}x := e {∃x′.(φ[x 7→ x′] ∧ x = e[x 7→ x′])}

Andrzej Tarlecki: Semantics & Veri�cation - 147 -

Loop invariant�
�

�
�

an instance of the assignment rule:

{sqr = (rt + 1)2 ∧ sqr ≤ n} rt := rt + 1 {sqr = rt2 ∧ sqr ≤ n}

• {(sqr = (rt + 1)2 ∧ rt2 ≤ n) ∧ sqr ≤ n} rt := rt + 1 {sqr = rt2 ∧ sqr ≤ n}

• {sqr = rt2 ∧ sqr ≤ n} sqr := sqr + 2 ∗ rt + 1 {sqr = (rt + 1)2 ∧ rt2 ≤ n}

• {(sqr = (rt + 1)2 ∧ rt2 ≤ n) ∧ sqr ≤ n}
rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{sqr = (rt + 1)2 ∧ rt2 ≤ n}
�
�

�
�{φ ∧ b}S {φ}

{φ}while b do S {φ ∧ ¬b}

• {sqr = (rt + 1)2 ∧ rt2 ≤ n}
while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{(sqr = (rt + 1)2 ∧ rt2 ≤ n) ∧ ¬(sqr ≤ n)}

Andrzej Tarlecki: Semantics & Veri�cation - 148 -

Finishing up

• {sqr = (rt + 1)2 ∧ rt2 ≤ n}
while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

•
{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

QED

Andrzej Tarlecki: Semantics & Veri�cation - 149 -

A fully speci�ed program
�

� 	

P
ra
ct
ic
al

re
pr
es
en
ta
ti
on

of
a
co
m
p
le
te

pr
o
of

tr
ee

{n ≥ 0}
rt := 0;

{n ≥ 0 ∧ rt = 0}
sqr := 1;

{n ≥ 0 ∧ rt = 0 ∧ sqr = 1}
while {sqr = (rt + 1)2 ∧ rt2 ≤ n} sqr ≤ n do

rt := rt + 1;

{sqr = rt2 ∧ sqr ≤ n}
sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n < (rt + 1)2}

Andrzej Tarlecki: Semantics & Veri�cation - 150 -

The �rst-order theory in use

In the proof above, we have used quite a number of facts concerning the underlying

data type, that is, Int with the operations and relations built into the syntax of

Tiny. Indeed, each use of the consequence rule requires such facts.

De�ne the theory of Int

T H(Int)

to be the set of all formulae that hold in all states.

The above proof shows:

T H(Int) ⊢

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

Andrzej Tarlecki: Semantics & Veri�cation - 151 -

Soundness

Fact: Hoare's proof calculus (given by the above rules) is sound, that is:

if T H(Int) ⊢ {φ}S {ψ} then |= {φ}S {ψ}

Proof: in due course. . .

So, the above proof of a correctness judgement validates the following semantic fact:

|=

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

Andrzej Tarlecki: Semantics & Veri�cation - 152 -

Problems with completeness

• If T ⊆ Form is r.e. then the set of all Hoare's triples derivable from T is r.e. as

well.

• |= {true}S {false} i� S fails to terminate for all initial states.

• Since the halting problem is not decidable for Tiny, the set of all judgements of

the form {true}S {false} such that |= {true}S {false} is not r.e.

Nevertheless:

T H(Int) ⊢ {φ}S {ψ} i� |= {φ}S {ψ}

Andrzej Tarlecki: Semantics & Veri�cation - 153 -

