Working example'

For a while, we will work with a trivial iterative programming language:

TINY

— simple arithmetic expressions
— simple boolean expressions

— simple statements (assignment, conditional, loop)

Andrzej Tarlecki: Semantics & Verification

Syntactic categories I

e numerals
N € Num
with syntax given by:
N:a:=0|1]2]---
e variables
x € Var
with syntax given by:
x ::= --- sequences of letters and digits beginning with a letter - - -
e (arithmetic) expressions
e € Exp
with syntax given by:
ex=N|x|er+e|erxes|er — e

Andrzej Tarlecki: Semantics & Verification

e boolean expressions

with syntax given by:

b e BExp

b::=true | false|e; <ey| b | by Abs

e statements

with syntax given by:

S i=ux:=e|skip | S1;95; | if b then S; else S5 | while b do S’

S € Stmt

Andrzej Tarlecki: Semantics & Verification

- 30 -

Before we move on.

(to the semantics)
The definition of syntax, like:

e (arithmetic) expressions

e € Exp

with syntax given by:
ex=N|x|el1+ex|erxex|er — e

implies that each expression is of exactly one of the forms given above, all these forms
are distinct, and all the expressions can be built by using the above constructs
consecutively.

Things can be defined and proved by
(STRUCTURAL) INDUCTION

Andrzej Tarlecki: Semantics & Verification -31-

Semantic categories I

Easy things first:
e boolean values
Bool = {tt, ff}
e [ntegers
Int = {0,1,-1,2,-2,...}

with the obvious semantic function:

N : Num — Int

NIl =0
N[1] =1

o BTW: _[_] is just a semantic function
N[2] =2 application, with [| used to separate syn-

tactic phrases from the semantic context.

Andrzej Tarlecki: Semantics & Verification -32-

Valuations of variables'

e states (for now: total functions from Var to Int)

s € State = Var — Int

— lookup (of the value of a variable = in a state s) is function application

ST

s(x) often written as

ST

— update a state: s’ = s|y — n]

, sx ifx#uy

n ifr=y

Andrzej Tarlecki: Semantics & Verification

Semantics of expressions'

E: Exp — (State — Int)

defined in the obvious way:

&

M n 0y

[N]s =N[N]

] s =S

le1 + es] s =E[e1] s + Ees] s
le1 xea] s =E[er] s*Ees] s
le1 —ex] s = Efer] s — E]ea] s

BTW: Higher-order functions will be used very frequently!

No further warnings!

Andrzej Tarlecki: Semantics & Verification

- 34 -

Semantics of boolean expressions'

B: BExp — (State — Bool)
defined in the obvious way:
Btrue]s =tt
B(false] s =ff
tt if Efer] s < Eez] s

Bﬂ€1§62H8:<)
ff if Efe1] s £ Efes] s

ff if B[b]s=tt

Bl-bls =« .
tt if B[b]s=ff

tt if B[b1] s =tt and B[bs] s = tt

B[[bl/\bg]]s = {]
ff if B[b1] s =1f or B]bs] s = ff

Andrzej Tarlecki: Semantics & Verification

- 35 -

Semantics of statements.

This will be given in various styles to illustrate various approaches to formal semantics.

Consider the previous definitions as auxiliary

Andrzej Tarlecki: Semantics & Verification - 36 -

Operational semantics I

small-step semantics

Overall idea:
e define configurations: v € I’
e indicate which of them are terminal: T C T

e define a (one-step) transition relation: = CT' x I’

— for v € T, assume v %

e study computations: (finite or infinite) sequences of configurations

YO V1o ooy Vi Vidly e e o s

such that v; = 7,41, written as:

V0 =N = Vi = Vil =

Andrzej Tarlecki: Semantics & Verification - 37 -

Computations I

Maximal computations may be:
— terminating: Yo =71 ="' =Y, Tn €T

— blocking: vo =71 ==Y, "n €T and v, %

— infinite (looping): vo = 71 = -+~

Moreover:
o v=F~'for k>0, if there is a computation y =y =11 = - = v, =+

o v=*~"if y =%~ for some k >0

BTW: =* C T x I is the least reflexive and transitive relation that contains =.

Andrzej Tarlecki: Semantics & Verification

- 38 -

TINY: operational semantics'

Configurations: I' = (Stmt x State) U State
Terminal configurations: T = State

Transition relation contains only:

r:=e,s) = slx— (E]e] s)]

skip, s) = s

if b then S; else Sy, s) = (57, s) if B[b] s = tt

if b then S; else Sy, s) = (55, s) if B[b] s =ff
while b do S, s) = (S;while bdo S, s) if B[b] s = tt

<
<
<
<
<
(while b do S, s) = s if B[b] s =ff

C .. plus transitions of sequential composition}

Andrzej Tarlecki: Semantics & Verification -39 -

Sequential composition'

= ff

if B[b] s = tt

(x:=e;5,s) = (S, sz — (E]e] s)])

(skip; S,s) = (S, s)

((if b then S; else S3): S, s) = (51: 5, s) if B[b] s = tt
((if b then S; else S3);: S, s) = (52: 5, s) if B[b] s
((while b do 5); 5", s) = (S;(while b do §;5"), s)
((while b do 5); 5", s) = (5, s) if B[b] s =ff
((51;92);5,s) = (51;(52;9), s)

Andrzej Tarlecki: Semantics & Verification

- 40 -

Sequential composition differently'

(:=e,5) = slz— (E]e] 5)]

<sk1p, s) = S

(S1;82,8) = (S2,s") if (S1,8) = ¢

(S1;99,8) = (S1:592,s") if (S1,s) = (S1,5")

(if b then S; else S3,s) = (S1,s) if B[b] s = tt

(if b then 57 else S3,s) = (S2,s) if B[b] s =ff
(while b do S, s) = (S;while b do S,s) if B[b]s=tt
(while bdo S,s) = s if B[b]s=f1f

To be read as: = C I x I' is the least relation such that
— (z:=e,s) = slx — (E]e] s)], for all x € Var, e € Exp, s € State

— (51;59,8) = (S3,s") if (S1,s) = &', for all S1,5; € Stmt, s,s’ € State

Andrzej Tarlecki: Semantics & Verification

- 41 -

Rules to derive transitions.

(x:=e,s) = slz— (E]e])] (skip, s) = s
(S1,8) = & (S1,s) = (S1,s")
(S1;92,5) = (Sa,s") (S1;82,5) = (S7: 52, 5")
B[b] s = tt B[b] s = ff
(if b then S; else Ss,s) = (51, s) (if b then S; else S, s) = (53, s)
B[b] s = tt B[b] s = ff
(while b do S, s) = (S;while b do S, s) (while bdo S,s) = s

Notational variants:
e axioms vs. rules without premises: (skip,s) = s

e side-conditions vs. premises: . if B[b] s = ff
(while bdo S,s) = s

Andrzej Tarlecki: Semantics & Verification

- 42 -

Proof-theoretic reading'

We give
— axioms, like (z:=e,s) = slx — (E]e] s)], and

<51, S> = s

— rules, like
(S1; 82, 8) = (82, 5")

to derive (or better: prove) judgements of the form v =/, i.e.

(S,s) =s"| or | (S,s) = (5, 5)

Actually: we give axiom and rule schemata, which are generic in the choice of
elements to be substituted for meta-variables used (z € Var, e € Exp, s,s € State,
51,52 € Stmt, etc).

We may write || - v = ~’ || to indicate that there exists a proof of v = ~/.

Andrzej Tarlecki: Semantics & Verification - 43 -

Proofs/derivations I

Finite proof tree (or derivation tree):

e leaves: labelled by axioms, e.g.

: (x:=e,s) = s|lx— (E]e] s)]

: <Sl,8> =
: <51;SQ,S> :>S//

Another proof technique

Induction on the structure of proof/derivation trees

e other nodes: labelled according to the rules, e.g.

e root: judgement proved, e.g. : (S,s) = ¢

Andrzej Tarlecki: Semantics & Verification

- 44 -

Some properties I

Fact: TINY is deterministic, i.e.: for each configuration (S, s)
if (S,s) = 1 and (S,s) = v then y1 = 7s.
Proof: By structural induction on S.

Fact: /n TiNY, for each configuration (S, s) there is exactly one maximal
computation starting in (S, s).

Another proof technique:

Induction on the length of computation

Andrzej Tarlecki: Semantics & Verification

- 45 -

On nondeterminism of computations'

Nondeterministic small-step semantics for arithmetic expressions: I' = Exp x State

if V[N] =sx

<€27S> = <6/273,>
(e1 +ea,8) = (e +€5,8")

> if N[N1] + N[No] = N[M]

Fact: if (e,s) =* (N,s') and (e,s) =* (N',s") then N[N] = N[N'] (and

s=s=5")

Gnclude “semantic’ integers as expressions and modify the semantics above)

Andrzej Tarlecki: Semantics & Verification - 46 -

* V1

7 N " Church-Rosser property I

’Y\ .
%’Yz/

Confluence: if v =* v and v =* 5 then vy =* 7' and v =* +’ for some +’

Weak confluence: if v = ~; and v = 75 then v4 =* 4/ and vo =* +' for some ~/

Warning: weak confluence does not entail confluence:

N

o <« o o > @

N

Fact: If= C T x T isstrongly normalizing (i.e., no infinite computations) and is

weakly confluent then it is confluent. Newman's Lemma

Andrzej Tarlecki: Semantics & Verification

- 47 -

Some variants.

e instead of the current rules for if:

(if b then S; else Sy, s) = (S1,s") if B[b] s =tt and (S1,s) = (51,5)
(if b then S; else Sy, s) = ¢ if B[b] s =tt and (S1,s) = &
(if b then Sy else Sy, s) = (S55,8") if B[b] s =ff and (Ss,s) = (S}, ")
(if b then 57 else 53, s) = ¢ if B[b] s =1ff and (Ss,s) = &

e similarly for while, the first case

e instead of the current rules for while:

(while b do S, s) = (if b then (S;while b do S) else skip, s)

e in fact: two distinct variants of = are given at the previous slides

Andrzej Tarlecki: Semantics & Verification - 48 -

Natural semantics.

big-step operational semantics

Overall idea:
e define configurations: v € T’
e indicate which of them are terminal: T C T

e instead of computations, consider (define) transitions directly to final
configurations that are reached by computations: ~ CI' x T

Informally:

—ityv=yv= =7, T €T, then vg~ v,
—ify=7= =%, 7% ¢Tand v, %, then g %
— it y9g = 71 = -+ then g %

Andrzej Tarlecki: Semantics & Verification - 49 -

TINY: natural semantics'

(x:=e,s) ~ slx— (E]e] s)]
Configurations:
(skip, s) ~ s I' = (Stmt x State) U State
(S1,8) ~ & (Ss,8") ~ " Terminal configurations: (as before]
(813 85,5) ~ 5 | = State
/ Transitions: as given here
(S1,8) ~ s _
if B[b] s = tt
(if b then S else Sy, s) ~» &’ o]
(52, 8) ~ & if B[b] s = fF
| s =
(if b then S; else Sy, s) ~» &’
(S,s) ~ s (while b do S, s") ~» s" £ B[] s =

(while b do S, s) ~» 5"

(while bdo S,s)~ s if B[b]s=ff

Andrzej Tarlecki: Semantics & Verification

Some properties I

Fact: TINY is deterministic, i.e.:
for each + (S,s)~ &, if +(S,s)~» §" then s’ =s".

Proof: By (easy) induction on the proof of F (S, s) ~ ¢'.

BTW: Try also to prove this by induction on the structure of S — is there a trouble?

e structural induction fails here: the semantics of while is not compositional.

(S,8) ~ & (while b do S, s’) ~ 5"
(while b do S, s) ~» 5"

if B[b] s = tt

@I\/Iore on compositionality Iate@

Andrzej Tarlecki: Semantics & Verification - 51 -

Semantic equivalence'

Statements S1, S2 € Stmt are naturally equivalent (equivalent w.r.t. the natural
semantics)

S1 =ns 52

if for all states s, s’ € State,
= (S1,8) ~ s iff = (S3,8) ~ &
Fact: For instance, the following can be proved by induction of the derivation:
o S:skip =ns skip; S =ns S
o (51;52); 53 =ns S1;(52;53)
e while b do S =y if b then (S;while b do 5) else skip

e if b then (if ¥’ then S; else S7) else S5
=ns if b AV then S; else (if b A —b then S else S5)

Andrzej Tarlecki: Semantics & Verification -52-

Congruence properties I

Fact: The semantic equivalence is preserved by the linguistic constructs:

o if S1 =n5s S7 and S =xns S5 then
S1;82 =ns 571595

o if Sy =pns S and S =ns S then
if b then S; else Sy =prs if b then 5] else S5

o if S=ns S then

while b do S =xs while b do S’

BTW: This can be extended to incorporate a similarly defined equivalence for
expressions and boolean expressions.

Andrzej Tarlecki: Semantics & Verification

- 53 -

Operational vs. natural semantics for TINYI

“They are essentially the same”

Fact: The two semantics are equivalent w.r.t. the final results described:

= (S, s) ~ 5" iff (S,s) =" ¢

for all statements S € Stmt and states s, s’ € State.
Proof:

—" By induction on the structure of the derivation for (S, s) ~» s’

“ «<=": By induction on the length of the computation (S, s) =* ¢'.

Andrzej Tarlecki: Semantics & Verification

- 54 -

“Denotational’ semantics of statements.

Spo: Stmt — (State — State)

extracted from the natural or operational semantics as follows:

Spo[S]s=s"iff (S,s)~ s (iff (S,s) =*¢")

BTW: TINY is deterministic, so this indeed defines a function

Spo[S]: State — State

However, this function in general is partial.

So, in fact we define:

s’ if (S,s)~ ¢, ie (S,s)=%g
undefined if (S,s) %

‘SDO [[S]] S =

Andrzej Tarlecki: Semantics & Verification

- 55 -

Operational vs. natural semantics'

“They are quite different”

Natural semantics is more abstract than operational semantics

There are naturally equivalent statements with quite different sets of computations
given by the operational semantics.

e Natural semantics disregards all computations that “block™ or “loop”.

e Natural semantics does not provide detailed view of computations.

Andrzej Tarlecki: Semantics & Verification - 56 -

Operational equivalence'

Statements S1, Sy € Stmt are operationally equivalent (equivalent w.r.t. the
operational semantics)

S1 =0s 52

if for all states s € State, (S71,s) ~ (Sa,s) for some relation ~ C I' x I such that
S1 ~ Sg iff s1 = s9, and for all v1,v2 € Stmt x State such that v; ~ s

— if 1 = v} then 5 =* ~4 for some ~4 with v ~ ~4

— if 9 = 74 then 7 =* 4] for some ~] with v ~ ~4

Fact: If | S;1 =ps Sa| then | S =ns S92

Equivalences given as examples for natural equivalence carry over here as well. In
fact, for the language considered so far, natural and operational equivalence coincide.

Andrzej Tarlecki: Semantics & Verification - 57 -

Bisimulation in general'

Consider a graph (K, —) with “local observations” O(k), for each xk € K.

Definition: p C K x K is a (strong) bisimulation on (K,—) w.r.t. O(_) if for all
K1, ke € K such that k1 p ke we have O(k1) = O(k2), and

— if k1 — K} then ko — K, for some kb, with k' p K
— if kg — Kb then k1 — K} for some K’ with k) p K}

Two nodes k1, k9 € K are (strongly) bisimilar, written k1 = ko, if kK1 p Ko for some
bisimulation p C K x K.

Fact: ~ C K x K is an equivalence and bisimulation.

Weak bisimilarity, as used for =»gs, is defined analogously

Fact: Every bisimulation is a weak bisimulation, but not vice versa in general.

Andrzej Tarlecki: Semantics & Verification - 58 -

Adding nondeterminism and bIockingI

Extend the (syntax for) statements | S € Stmt | as follows:

S ::=-..|abort | S; or S

Operational semantics

(S1 or Sa,s) = (51, 8) (S1 or Sy, s) = (59,s)

Natural semantics

(S1,8) ~ & (S3,8) ~ &'

(S1 or Sy, 8) ~ & (S1 or Sy, s) ~» &

BTW: In either case, abort blocks (aborts?). ..

Andrzej Tarlecki: Semantics & Verification - 59 -

Looking at equivalences'

e S|ior Sy, =ps Sy or S
e abort =5 while true do skip

e abort =»s while true do skip
BTW: this does not hold under (strong) bisimulation!

e S or abort =55 S (angelic nondeterminism)
e S or abort Z»s S (unless S =»s abort)

e In general, the point of choice matters for operational equivalence:
S; (81 or S3) Zos (5;57) or (5;53)

e S;(S1orSy) =ns (5;51) or (S;57)

Andrzej Tarlecki: Semantics & Verification - 60 -

Adding “parallelism” I

Extend the statements | S € Stmt | with a “parallel” (interleaving) construct:

S:::-°°|51HSQ

Operational semantics

(51 [| S2.8) = (51 [| S2,8") if (S1,8) = (51.)
@Acceptable)]
(S1]| Sa,8) = (S1 || S5,8") if (S3,s) = (S4,s)

Natural semantics

(S1,8) ~ 8" (S,8") ~s 5" S9,8) ~ &

77
(51| S2,8) ~ 5"

Valals

@\/Iakes no senseD

Andrzej Tarlecki: Semantics & Verification - 61 -

