
Speci�cation as a development task

Given precondition φ and postcondition ψ

develop a program S such that

{φ}S {ψ}

Andrzej Tarlecki: Semantics & Veri�cation - 154 -

For instance

Find S such that

{n ≥ 0}S {rt2 ≤ n ∧ n < (rt + 1)2}

One correct solution:

{n ≥ 0}
rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

{rt2 ≤ n ∧ n < (rt + 1)2}

Andrzej Tarlecki: Semantics & Veri�cation - 155 -

Hoare's logic: trouble #1

Another correct solution:

{n ≥ 0}
while true do skip

{rt2 ≤ n ∧ n < (rt + 1)2}

since ⊢
{n ≥ 0}
while {true} true do skip

{rt2 ≤ n ∧ n < (rt + 1)2}'

&

$

%

#
"

!

Partial correctness:

termination not guaranteed,

and hence not requested!

Andrzej Tarlecki: Semantics & Veri�cation - 156 -

Total correctness�
�

�

�
 �	Total correctness = partial correctness + successful termination

Total correctness judgements:

[φ]S [ψ]

Intended meaning:

Whenever the program S starts in a state satisfying the precondition φ

then it terminates successfully in a �nal state that satis�es the postcondition ψ

Andrzej Tarlecki: Semantics & Veri�cation - 157 -

Total correctness: semantics

|= [φ]S [ψ]

iff

{φ} ⊆ [[S]] {ψ}

where for S ∈ Stmt, A ⊆ State:

[[S]]A = {s ∈ State | S[[S]] s = a, for some a ∈ A}�
�

�

�
 �	Spelling this out:

The total correctness judgement [φ]S [ψ] holds, written |= [φ]S [ψ],

if for all states s ∈ State

if F [[φ]] s = tt then S[[S]] s ∈ State and F [[ψ]] (S[[S]] s) = tt

Andrzej Tarlecki: Semantics & Veri�cation - 158 -

Total correctness: proof rules

[φ[x 7→ e]]x := e [φ]

[φ]S1 [θ] [θ]S2 [ψ]

[φ]S1;S2 [ψ]

???

[???]while b do S [???]

[φ] skip [φ]

[φ ∧ b]S1 [ψ] [φ ∧ ¬b]S2 [ψ]

[φ] if b then S1 else S2 [ψ]

φ′ ⇒ φ [φ]S [ψ] ψ⇒ ψ′

[φ′]S [ψ′]

�
 �	Adjustments are necessary if expressions may generate errors!

Andrzej Tarlecki: Semantics & Veri�cation - 159 -

Total-correctness rule for loops

(nat(l) ∧ φ(l + 1))⇒ b [nat(l) ∧ φ(l + 1)]S [φ(l)] φ(0)⇒¬b
[∃l.nat(l) ∧ φ(l)]while b do S [φ(0)]

where

− φ(l) is a formula with a free variable l that does not occur in while b do S,

− nat(l) stands for 0 ≤ l, and

− φ(l + 1) and φ(0) result by substituting, respectively, l + 1 and 0 for l in φ(l).'

&

$

%
#
"

!

�
�
�

�
 �	Informally: l is a counter

that indicates the number of iterations of the loop body

Andrzej Tarlecki: Semantics & Veri�cation - 160 -

For example

To prove:

[n ≥ 0 ∧ rt = 0 ∧ sqr = 1]

while sqr ≤ n do

rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

[rt2 ≤ n ∧ n < (rt + 1)2]

use the following invariant with the iteration counter l:

sqr = (rt + 1)2 ∧ rt2 ≤ n ∧ l = ⌊
√
n⌋ − rt'

&

$

%

'

&

$

%
Cheating here, of course:

�l = ⌊
√
n⌋ − rt� has to be captured by

a �rst-order formula in the language of Tiny

Luckily: this can be done!

Here, this is quite easy:

(rt + l)2 ≤ n < (rt + l + 1)2

Andrzej Tarlecki: Semantics & Veri�cation - 161 -

Well-founded relations

A relation ≻ ⊆W ×W is well-founded if there is no in�nite chain

a0 ≻ a1 ≻ . . . ≻ ai ≻ ai+1 ≻ . . .

Typical example:

⟨Nat, >⟩

BTW: For well-founded ≻ ⊆ W ×W , its transitive and

re�exive closure ≻∗ ⊆W ×W is a partial order on W .

BUT: subtracting identity from an arbitrary partial order

on W need not in general yield a well-founded relation.Few other examples:

• Natn with component-wise (strict) ordering;

• A∗ with proper pre�x ordering;

• Natn with lexicographic (strict) ordering generated by the usual ordering on

Nat;

• any ordinal with the natural (strict) ordering; etc.

Andrzej Tarlecki: Semantics & Veri�cation - 162 -

Total correctness = partial correctness + successful termination

Proof method

To prove

[φ]while b do S [φ ∧ ¬b]

• show �partial correctness�: [φ ∧ b]S [φ]

• show �termination�: �nd a set W with a well-founded relation ≻ ⊆W ×W and a

function w : State →W such that for all states s ∈ {φ ∧ b},

w(s) ≻ w(S[[S]] s)

BTW: w : State⇀W may be partial as long as it is de�ned on {φ ∧ b}.

Andrzej Tarlecki: Semantics & Veri�cation - 163 -

Example

Prove:

[x ≥ 0 ∧ y ≥ 0]

while x > 0 do

if y > 0 then y := y − 1 else (x :=x− 1; y := f(x))

[true]

where f yields a natural number for any natural argument.

• If one knows nothing more about f , then the previous proof rule for the total

correctness of loops is useless here.

• BUT: termination can be proved easily using the function

w : State → Nat×Nat, where w(s) = ⟨s x, s y⟩:
after each iteration of the loop body the value of w decreases w.r.t. the

(well-founded) lexicographic order on pairs of natural numbers.

Andrzej Tarlecki: Semantics & Veri�cation - 164 -

A fully speci�ed program

[x ≥ 0 ∧ y ≥ 0]

while [x ≥ 0 ∧ y ≥ 0] x > 0 do decr ⟨x, y⟩ in Nat×Nat wrt ≻
if y > 0 then y := y − 1 else (x :=x− 1; y := f(x))

[true] '

&

$

%

#
"

!

. . . with various notational variants

assuming some external de�nitions for

the well-founded set and function into it

Andrzej Tarlecki: Semantics & Veri�cation - 165 -

Hoare's logic: trouble #2

Find S such that

{n ≥ 0}S {rt2 ≤ n ∧ n < (rt + 1)2}

Another correct solution:

{n ≥ 0}
rt := 0;n := 0

{rt2 ≤ n ∧ n < (rt + 1)2}
OOOOPS?!

A number of techniques to avoid this:

• variables that are required not to be used in the program;

• binary postconditions;

• various forms of algorithmic/dynamic logic, with program modalities.

Andrzej Tarlecki: Semantics & Veri�cation - 166 -

Binary postconditions

Sketch

• New syntactic category BForm of binary formulae, which are like the usual

formulae, except they can use both the usual variables x ∈ Var and their �past�

copies x̂ ∈ V̂ar.

For any syntactic item ω, we write ω̂ for ω with each variable x replaced by x̂.

• Semantic function: BF : BForm → State× State → Bool

BF [[ψ]] ⟨s0, s⟩ is de�ned as usual, except that the state s0 is used to evaluate

�past� variables x̂ ∈ V̂ar and s is used to evaluate the usual variables x ∈ Var.

Andrzej Tarlecki: Semantics & Veri�cation - 167 -

Correctness judgements

preφ; S post ψ

where φ ∈ Form is a (unary) precondition; S ∈ Stmt is a statement (as usual); and

ψ ∈ BForm is a binary postcondition.

Semantics:

The judgement preφ; S post ψ holds, written |= preφ; S post ψ,

if for all states s ∈ State

if F [[φ]] s = tt then S[[S]] s ∈ State and BF [[ψ]] ⟨s,S[[S]] s⟩ = tt

Andrzej Tarlecki: Semantics & Veri�cation - 168 -

Proof rules

preφ; x := e post (φ̂ ∧ x = ê ∧ y⃗ = ̂⃗y)
where y⃗ are variables other than x.

preφ; skip post (φ ∧ y⃗ = ̂⃗y)
preφ1; S1 post (ψ1 ∧ φ2) preφ2; S2 post ψ2

preφ1; S1;S2 post ψ1 ∗ψ2

where ψ1 ∗ψ2 is ∃z⃗.(ψ1[x⃗ 7→ z⃗] ∧ ψ2[̂⃗x 7→ z⃗]), with all the variables free

in ψ1 or ψ2 are among x⃗ or ̂⃗x, and z⃗ are new variables.

Andrzej Tarlecki: Semantics & Veri�cation - 169 -

Further rules

preφ ∧ b; S1 post ψ preφ ∧ ¬b; S2 post ψ

preφ; if b then S1 else S2 post ψ

preφ ∧ b; S post (ψ ∧ ê ≻ e) ψ⇒ φ (ψ ∗ψ)⇒ ψ

preφ; while b do S post ((ψ ∨ (φ ∧ y⃗ = ̂⃗y)) ∧ ¬b)

where ≻ is well-founded, and all the free variables are among y⃗ or ̂⃗y.
φ′ ⇒ φ preφ; S post ψ ψ⇒ ψ′

preφ′; S post ψ′
preφ; S post ψ

preφ; S post (φ̂ ∧ ψ)

�
�

�

�
 �	The rules can (have to?) be polished. . .

Andrzej Tarlecki: Semantics & Veri�cation - 170 -

Example

We have now:

|=

pre n ≥ 0;

rt := 0; sqr := 1;

while sqr ≤ n do rt := rt + 1; sqr := sqr + 2 ∗ rt + 1

post rt2 ≤ n̂ ∧ n̂ < (rt + 1)2

BUT : ̸|=
{n ≥ 0}
rt := 0;n := 0

{rt2 ≤ n̂ ∧ n̂ < (rt + 1)2}

Andrzej Tarlecki: Semantics & Veri�cation - 171 -

Algorithmic/dynamic logic'

&

$

%
• Salwicki 1970

• Pratt 1974, Harel 1976

• many others to follow (see

Harel, Kozen & Tiuryn 2000)

Sketch

Overall idea:

Extend the logical formulae so that they are closed

under the usual logical connectives and quanti�cation,

as well as under program modalities

Syntax: For any formula φ and a statement S ∈ Stmt, build a new formula:

⟨S⟩φ

Semantics: F [[⟨S⟩φ]] s =

F [[φ]] s′ if S[[S]] s = s′ ∈ State

ff if S[[S]] s ̸∈ State

Andrzej Tarlecki: Semantics & Veri�cation - 172 -

Proof system

. . . axioms and rules to handle the standard connectives and quanti�cation . . .

Plus axioms and rules to deal with program modalities � interaction between

modalities and propositional connectives; (de)composition of modalities � for

instance:

⟨S⟩(φ ∧ ψ) ⇐⇒ (⟨S⟩φ ∧ ⟨S⟩ψ)

⟨S⟩¬φ =⇒ ¬⟨S⟩φ ⟨S⟩true =⇒ (¬⟨S⟩φ =⇒ ⟨S⟩¬φ)

⟨S1;S2⟩φ ⇐⇒ ⟨S1⟩(⟨S2⟩φ) etc.

Key to the completeness here: in�nitary rules for loops

Andrzej Tarlecki: Semantics & Veri�cation - 173 -

