Specification as a development task'

Given precondition ¢ and postcondition

develop a program S such that

{o) S{v}

Andrzej Tarlecki: Semantics & Verification - 154 -

For instance I

Find S such that

n>0}S{rt? <nAn<(rt+1)?}

One correct solution:

{n >0}

rt:=0; sqr:=1;

while sqr <ndo rt:=rt+1;sqr:=sqr+2xrt +1
(rt? <nAn<(rt+1)?%}

Andrzej Tarlecki: Semantics & Verification - 155 -

Hoare's logic: trouble #1'

Another correct solution:

{n20;

while true do skip
{rt? <nAn < (rt+1)%}

since

in 2> 0;
while {true} true do skip
{rt? <mAn < (rt+1)%}

Partial correctness:

termination not guaranteed,

and hence not requested!

Andrzej Tarlecki: Semantics & Verification

- 156 -

Total correctness I

@Total correctness = partial correctness + successful terminationD

Total correctness judgements:

Intended meaning:

Whenever the program S starts in a state satisfying the precondition

then it terminates successfully in a final state that satisfies the postcondition 1)

Andrzej Tarlecki: Semantics & Verification - 157 -

Total correctness: semantics.

= el S
iff

to} € [S]{v}

where for S € Stmt, A C State:

[S] A ={s € State | S[S] s = a, for some a € A}

@Spelling this out: D

The total correctness judgement [p] S [1)] holds, written = [p] S [¢],
if for all states s € State

if Flp] s = tt then S[S] s € State and F[¢] (S[S] s) = tt

Andrzej Tarlecki: Semantics & Verification - 158 -

Total correctness: proof ruIesI

plz = el zi=elp]

] S110] 0] S2 [¢]
1] S1: 52 [Y]

] skip [¢]

o ADIST Y] [A D] S2 Y]

(] if b then S; else S [¢]

777

77?] while b do S [?77]

o' =0 (el S Y=

(Adjustments are necessary if expressions may generate errorsD

Andrzej Tarlecki: Semantics & Verification

- 159 -

Total-correctness rule for Ioops'

(nat(l) Np(l+1)) =10 nat(l) Aol +1)] .S [e(l)] ©(0) = —b
[Fl.nat(l) A o(l)] while b do S [p(0)]

where
— (1) is a formula with a free variable [that does not occur in while b do 5,
— mnat(l) stands for 0 <, and

— (I + 1) and ¢(0) result by substituting, respectively, [+ 1 and 0 for [in ¢(1).

@nformally)) [is a counter

that indicates the number of iterations of the loop body

Andrzej Tarlecki: Semantics & Verification - 160 -

For example'

n>0A1rt =0A sqr =1]
while sgr <n do
rt:=rt+ 1;sqr:=sqr +2*rt + 1
12 <mAn < (rt+1)?

To prove:

use the following invariant with the iteration counter I:

sqr = (rt +1)2 Art? <nAl=|y/n] —rt

Cheating here, of course: Luckily: this can be done!

“l = |\/n| — rt" has to be captured by

a first-order formula in the language of TINY Here, this is quite easy:
(rt+10)2<n<(rt+1+1)>

Andrzej Tarlecki: Semantics & Verification - 161 -

Well-founded reIationsI

A relation = C W x W is well-founded if there is no infinite chain

ap >~ Qa1 > ... Q; 7= Qj41 > ...

Typical example: BTW: For well-founded = C W x W, its transitive and
(Nat, >) reflexive closure =* C W x W is a partial order on W.
BUT: subtracting identity from an arbitrary partial order

Few other examples: on W need not in general yield a well-founded relation.

e Nat™ with component-wise (strict) ordering;
e A* with proper prefix ordering;

e Nat™ with lexicographic (strict) ordering generated by the usual ordering on
Nat;

e any ordinal with the natural (strict) ordering; etc.

Andrzej Tarlecki: Semantics & Verification - 162 -

Total correctness = partial correctness + successful termination'

Proof method

To prove

lp] while b do S [p A —b]

e show “partial correctness™: [p A b] S [¢]

e show “termination’: find a set W with a well-founded relation = C W x W and a
function w: State — W such that for all states s € {¢ A b},

w(s) = w(S[9] s)

BTW: w: State — W may be partial as long as it is defined on {© A b}.

Andrzej Tarlecki: Semantics & Verification - 163 -

Example'

Prove:

x>0y >0]
while x > 0 do
if y>0theny:=y—1else (r:=x— 1;y:= f(x))

[true]

where f yields a natural number for any natural argument.

e If one knows nothing more about f, then the previous proof rule for the total

correctness of loops is useless here.

e BUT: termination can be proved easily using the function
w: State — Nat x Nat, where w(s) = (sx, sy):
after each iteration of the loop body the value of w decreases w.r.t. the
(well-founded) lexicographic order on pairs of natural numbers.

Andrzej Tarlecki: Semantics & Verification

- 164 -

A fully specified program'

[z >0Ay >0
while [t > 0Ay > 0] z > 0 do decr (z,y) in Nat x Nat wrt >~

if y>0theny:=y—1else (zr:=x— 1;y:= f(x))

[true]

... with various notational variants
assuming some external definitions for
the well-founded set and function into it

Andrzej Tarlecki: Semantics & Verification - 165 -

Hoare's logic: trouble #2'

Find S such that

n>0}S{rt2 <nAn<(rt+1)>?}

Another correct solution:

{n >0}
rt:=0;n:=0
{rt? <mnAn < (rt+1)%}

OOOOPS?!

A number of techniques to avoid this:
e variables that are required not to be used in the program:;
e binary postconditions;

e various forms of algorithmic/dynamic logic, with program modalities.

Andrzej Tarlecki: Semantics & Verification - 166 -

Binary postconditions I

e New syntactic category

Sketch

BForm

of binary formulae, which are like the usual

formulae, except they can use both the usual variables £ € Var and their “past”

copies T € Var.

For any syntactic item w, we write & for w with each variable = replaced by 7.

e Semantic function: | BF: BForm — State x State — Bool

BF[v] (s, s) is defined as usual, except that the state sq is used to evaluate

“past’ variables ¥ € Var and s is used to evaluate the usual variables x € Var.

Andrzej Tarlecki: Semantics & Verification

- 167 -

Correctness judgements I

pre w; S post

where ¢ € Form is a (unary) precondition; S € Stmt is a statement (as usual); and
1 € BForm is a binary postcondition.

Semantics:

The judgement pre ¢; S posty holds, written |= pre ; S post 1,
if for all states s € State

it 7] s = tt then S[S] s € State and BF[¢] (s, S[S] s) = tt

Andrzej Tarlecki: Semantics & Verification - 168 -

Proof rules I

prep; x:=epost(pNx=eNy=71)

where ¢/ are variables other than x.

AN
—

pre g; skip post (p A § = ¥)

prep1; S1 post (Y1 A @2) pre pa; Sz post P
prep; S1;S2 post 1 * g

where 1 x 1o is 3Z.(Y1[X — 2] A po|T — Z]), with all the variables free
in 11 or 19 are among I or X, and Z" are new variables.

Andrzej Tarlecki: Semantics & Verification - 169 -

Further rules I

pre A b; S1 post pre o A —b; So post

pre @; if b then S| else Sy post i

prew Ab; S post (Y AN e = e) Y= (%)) = 1
pre p; while b do S post ((¢ V (gp/\g’:/y:’)) A —b)

where > is well-founded, and all the free variables are among 4 or ¥.

@ = ¢ prep; S posty =1 pre ; S post
preg’; S posty’ pre; S post (P A1)

@The rules can (have to?) be polished. . D

Andrzej Tarlecki: Semantics & Verification - 170 -

Example'

We have now:

pre n > 0;
_ rt:=0; sqr:=1;

while sgqr <ndo rt:=rt+ 1;sqr:=sqr+2xrt + 1
post rt? <nAn < (rt+1)?

{n >0}
BUT : = rt:=0;n:=0
(rt? <nAn<(rt+1)%}

Andrzej Tarlecki: Semantics & Verification - 171 -

Algorithmic/dynamic Iogic'
ﬁalwicki 1970 \

e Pratt 1974, Harel 1976
e many others to follow (see

Overall idea: Qarel, Kozen & Tiuryn QOOW

Sketch

Extend the logical formulae so that they are closed
under the usual logical connectives and quantification,
as well as under program modalities

Syntax: For any formula ¢ and a statement S € Stmt, build a new formula:

()

Fle] s if S[S]s=s" € State

Semantics: F[(S)y| s =
[15)¢] ff if S[S]s & State

Andrzej Tarlecki: Semantics & Verification - 172 -

Proof system I

... axioms and rules to handle the standard connectives and quantification . ..

Plus axioms and rules to deal with program modalities — interaction between
modalities and propositional connectives; (de)composition of modalities — for
Instance:

(S) (e AY) = ((S)e A (5)Y)

(S)—p = ~(S)p (S)true = (~(S)p = (S)~yp)

(51;52)0 <= (S1)((S2)p) etc.

Key to the completeness here: | infinitary rules for loops

Andrzej Tarlecki: Semantics & Verification - 173 -

