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1. Relacja r w zbiorze PpN`q (gdzie N` “ N´ t0u) jest określona tak: X r Y zachodzi
wtedy i tylko wtedy, gdy1 p@n P X Dm P Y. n |mq ^ p@n P Y Dm P X. n |mq

(a) Udowodnić, że r jest relacją równoważności.

(b) Jakiej mocy jest zbiór ilorazowy PpN`q{r?

(c) Jakiej mocy jest klasa abstrakcji relacji r wyznaczona przez zbiór D “ t10u?

(d) Jakiej mocy jest klasa wyznaczona przez zbiór E “ t2p | p jest liczbą pierwsząu?

(e) Znaleźć wszystkie liczby kardynalne, które są mocami klas abstrakcji relacji r.

2. Niech Ď będzie relacją w zbiorze NN określoną następująco:

f Ď g ô @n P N pfpnq ď gpnq ^ fpt0, . . . , nuq Ď gpt0, . . . , nuqq.

Wiadomo, że relacja Ď jest porządkiem częściowym.

(a) Czy porządek Ď jest dobrze ufundowany?

(b) Jakiej mocy jest zbiór wszystkich elementów minimalnych w tym porządku?

(c) Jakiej mocy jest zbiór wszystkich elementów maksymalnych w tym porządku?

(d) Czy w tym porządku istnieje nieprzeliczalny antyłańcuch?

3. Zbiór A Ď N nazwijmy matecznikiem funkcji f : N Ñ N, gdy spełnia dwa warunki:
po pierwsze fpAq “ Rgpfq, po drugie, jeśli B ⊊ A, to fpBq ‰ Rgpfq. Przez Mpfq

oznaczmy zbiór wszystkich mateczników funkcji f .

(a) Udowodnić, że jeśli A,B P Mpfq, to A „ B.

(b) Znaleźć przeciwobraz rodziny tR P PpPpNqq | R ď 1u przy operacji M.

(c) Znaleźć przeciwobraz rodziny tR P PpPpNqq | @A P R. A ď 1u przy M.

(d) Jaka jest moc zbioru RgpMq?

Uwaga: Wiadomo, że rodziny: wszystkich injekcji, wszystkich surjekcji i wszystkich bi-
jekcji z N do N są mocy continuum.

1Przyjmujemy, że k | ℓ wtedy i tylko wtedy, gdy Dr P N. ℓ “ k ¨ r.



Rozwiązania

1a: Ta relacja jest jądrem operacji D : PpN`q Ñ PpN`q, gdzie DpXq “ tn | Dmpm P X ^n |mqu,
a zatem jest relacją równoważności. Istotnie, przypuśćmy, że X r Y i niech n P DpXq. Wtedy
n |m, dla pewnego m P X. Z definicji r wynika, że m | k dla pewnego k P Y , a stąd n | k P Y ,
co właśnie znaczy, że n P DpY q. A więc DpXq Ď DpY q i analogicznie DpY q Ď DpXq. Stąd
xX,Y y P kerpDq. Teraz załóżmy, że xX,Y y P kerpDq, czyli DpXq “ DpY q i pokażmy, że X r Y .
Niech więc n P X. Ponieważ X Ď DpXq “ DpY q, więc istnieje takie m P Y , że n |m. Analogicznie
sprawdzimy drugą część warunku.

1b: Zbiór ilorazowy jest co najwyżej mocy continuum, bo taka jest moc przeciwdziedziny funkcji D.
Jest co najmniej tej mocy, bo każdy podzbiór zbioru liczb pierwszych wyznacza osobną klasę
abstrakcji (czyli λX rXsr : PpPierwszeq

1´1
ÝÑ PpN`q{r). Istotnie: dla X P PpPierwszeq mamy

DpXq “ X Y t1u. Jeśli więc zbiory X,Y P PpPierwszeq są różne, to także DpXq ‰ DpY q.
Z twierdzenia Cantora-Bernsteina wynika, że zbiór PpN`q{r ma dokładnie moc C.

1c: Zbiór t10u wyznacza ośmioelementową klasę abstrakcji, Jej elementy to wszystkie podzbiory
zbioru Dpt10uq “ t1, 2, 5, 10u, do których należy liczba 10.

1d: Zbiór E wyznacza klasę abstrakcji mocy continuum. Ograniczenie górne jest oczywiste.
Dla pokazania ograniczenia dolnego rozpatrzmy funkcję h : PpPierwszeq

1´1
ÝÑ rEsr, określoną

następująco: hpXq “ X Y E. Funkcja h jest dobrze określona. Po pierwsze dlatego, że każdy
element n P hpXq dzieli jakiś element m P E (jeśli n P X, to n | 2n P E, gdyż n P Pierwsze,
a w przeciwnym razie n dzieli sam siebie). A po drugie, każdy element E Ď X Y E też dzieli sam
siebie. Różnowartościowość h jest oczywista, gdyż zbiory Pierwsze i E są rozłączne.

1e: Weźmy zbiór A Ď N` i niech M Ď A to będzie zbiór jego elementów maksymalnych ze
względu na relację podzielności. Zauważmy, że jeśli B rA, to M Ď B. Jeśli bowiem m P M ,
to m |n dla pewnego n P B, a ponieważ n dzieli jakieś k P A, to także m | k. Z maksymalności m
wynika m “ n “ k, więc m P B.

Przypadek 1: każdy element A ´ M jest dzielnikiem jakiegoś elementu maksymalnego. Wtedy
DpAq “ DpMq, co więcej dla dowolnego zbioru B zachodzi równoważność

DpBq “ DpAq wtedy i tylko wtedy, gdy M Ď B Ď DpMq.

Inaczej, rAsr “ tX YM |X Ď DpMq ´Mu i jest to zbiór równoliczny z PpDpMq ´Mq. Jeśli zbiór
DpMq ´ M jest mocy m, to nasza klasa ma moc 2m.

Jeśli A jest zbiorem skończonym, to m też jest skończone. Co więcej, dla dowolnego m P N
zbiór A “ t1, 2, 4, . . . , 2mu wyznacza klasę mocy 2m. Istotnie, w tym przypadku M “ t2mu,
DpMq “ DpAq “ A oraz DpMq ´ M ma dokładnie m elementów. Zatem skończone moce klas to
wszystkie liczby postaci 2m, a klasy nieskończone muszą być mocy 2ℵ0 , bo zbiór DpMq ´ M jest
przecież przeliczalny.

Przypadek 2: Istnieje jakieś a0 P A, które nie jest dzielnikiem żadnego elementu maksymalnego.
Łatwo widzieć, że wtedy istnieje nieskończony ciąg a0, a1, a2, . . . elementów A, rosnący w sensie
relacji podzielności (czyli ai ‰ ai`1 oraz ai | ai`1 dla wszystkich i). Funkcja H : PpNq

1´1
ÝÑ rAsr

może być określona na przykład tak: HpXq “ A´ ta2x | x P Xu. Ponieważ funkcja H jest dobrze
określona (dla każdego X P PpNq zachodzi HpXq r A) i różnowartościowa, więc moc klasy rAsr

jest ograniczona z dołu przez continuum, a zatem i równa continuum.

2a: Relacja Ď nie jest dobrze ufundowana, bo ciąg fi “ λn. if n ď i then 0 else 1 jest
malejący, tj. fi`1 Ł fi dla wszystkich i P N. Oczywiście fi`1pnq ď fipnq dla wszystkich i, n P N.
Nadto, fi`1pt0, . . . , nuq “ t0u “ fipt0, . . . , nuq, dla n ď i, natomiast w przeciwnym przypadku
fi`1pt0, . . . , nuq Ď t0, 1u “ fi`1pt0, . . . , nuq. (Nb. jeśli w definicji fi zmienimy ď na ă, to f0 Ğ f1.)
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2b: Elementy minimalne to dokładnie funkcje nierosnące. Zbiór tych funkcji jest mocy ℵ0.

Załóżmy najpierw, że funkcja f jest minimalna ze względu na Ď. Pokażemy przez indukcję, że
fpk`1q ď fpkq dla k P N. Przypuśćmy więc, że teza zachodzi dla k ă n. Niech teraz gpnq “ fpnq

dla wszystkich n ‰ k ` 1 i niech gpk ` 1q “ mintfpkq, fpk ` 1qu. Nietrudno sprawdzić, że g Ď f ,
a skoro f jest minimalna, to g “ f . Ale to znaczy, że fpk ` 1q ď fpkq.

Pozostaje wykazać, że funkcje nierosnące są elementami minimalnymi. Rozpatrzmy taką funkcję f
i załóżmy, że g Ď f . Pokażemy równość gpnq “ fpnq przez indukcję ze względu na n. Dla n “ 0
teza wynika natychmiast z warunku tgp0qu Ď tfp0qu. Załóżmy teraz, że dla dowolnego i ă n
zachodzi gpiq “ fpiq. Skoro g Ď f , to gpnq ď fpnq oraz gpt0, . . . , nuq Ď fpt0, . . . , nuq, więc
gpnq P fpt0, . . . , nuq. Elementem najmniejszym tego zbioru jest fpnq, bo funkcja f jest nierosnąca.
Zatem gpnq ě fpnq i mamy równość.

2c: Zbiór wszystkich funkcji z N w N jest mocy continuum. Jeśli więc wskażemy rodzinę elementów
maksymalnych mocy continuum, to z tw. Cantora-Bernsteina wywnioskujemy, że zbiór wszystkich
elementów maksymalnych też jest mocy C. A taką rodzinę tworzą funkcje różnowartościowe.

Niech f będzie funkcją różnowartościową i niech f Ď g. Przez indukcję ze względu na n po-
każemy, że dla każdego n P N zachodzi fpnq “ gpnq. Dla n “ 0 jest to oczywiste; w kroku
indukcyjnym wiemy, że zbiory fpt0, . . . , n´1uq i gpt0, . . . , n´1uq są n-elementowe i równe. Skoro
więc fpt0, . . . , nuq Ď gpt0, . . . , nuq, a zbiór fpt0, . . . , nuq ma n ` 1 elementów, to gpt0, . . . , nuq też
musi mieć (co najmniej) n`1 elementów. No to gpnq musi być równe „nowemu” elementowi fpnq.
A zatem udowodniliśmy, że każda funkcja różnowartościowa jest elementem maksymalnym w Ď.
(Tak naprawdę zachodzi również implikacja odwrotna, w naszym dowodzie niepotrzebna.)

2d: Tak, na przykład rodzina wszystkich injekcji (por. 2c).

3a: Niech A P Mpfq. Wiemy, że fpAq “ Rgpfq. Ponadto funkcja f↾A jest różnowartoś-
ciowa. W rzeczy samej, jeśli fpaq “ fpbq dla pewnych a, b P A, to A nie jest matecznikiem,
bo fpA ´ tauq “ fpAq “ Rgpfq. A zatem f↾A : A

1´1
ÝÑ
na

Rgpfq, czyli każdy matecznik jest równo-
liczny ze zbiorem wartości funkcji.

3b: Przeciwobraz rodziny tR P PpPpNqq | R ď 1u przy operacji M to zbiór wszystkich funkcji,
które mają co najwyżej jeden matecznik. Każda funkcja ma co najmniej jeden: wystarczy dowolny
selektor ilorazu jądra (taki zbiór, do którego należy dokładnie po jednym elemencie z każdej klasy
jądra funkcji f). Pozostaje więc pytanie kiedy jest tylko jeden. Otóż wtedy, gdy funkcja jest
różnowartościowa. Każda klasa jądra takiej funkcji ma tylko jeden element, więc selektor można
wybrać tylko na jeden sposób. A jeśli funkcja nie jest injekcją, czyli fpaq “ fpbq “ k dla pewnych
a, b, k, to istnieją co najmniej dwa mateczniki: należy wybrać po jednym elemencie z każdej klasy
f´1ptnuq dla n ‰ k i dodać do nich albo a albo b. Zatem szukany przeciwobraz to zbiór wszystkich
funkcji różnowartościowych.

3c: Teraz pytamy o zbiór wszystkich funkcji, które mają tylko mateczniki co najwyżej jednoele-
mentowe. W części 3a pokazaliśmy, że mateczniki są równoliczne ze zbiorem wartości funkcji.
Taki zbiór Rgpfq nigdy nie jest pusty, a ma jeden element wtedy i tylko wtedy, gdy funkcja f jest
stała. Zatem szukany przeciwobraz to zbiór wszystkich funkcji stałych.

3d: Rodzina RgpMq to rodzina wszystkich rodzin postaci Mpfq. Ponieważ dziedziną funkcji M
jest zbiór N Ñ N o mocy continuum, więc zbiór wartości jest co najwyżej tej mocy. Pokażemy,
że zbiór Mpfq jest też co najmniej mocy C. Zdefiniujemy funkcję Θ : PpN`q

1´1
ÝÑ RgpMq w ten

sposób: dla dowolnego A Ď N` niech θA “ λn. if n P A then n else 0 i niech ΘpAq “ MpθAq.
Sprawdzamy różnowartościowość: niech na przykład a P A ´ B gdzie A,B Ď N`. Wtedy zbiór
AY t0u jest matecznikiem funkcji θA, ale nie jest matecznikiem funkcji θB, bo θBpaq “ 0 “ θBp0q.
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