Rachunek lambda - ciag dalszy

18 marca 2013

Sita wyrazu: logika zdaniowa

true = Axy.x false = \xy.y

if P then Q else R = PQR.

It works:
if true then Q else R -3 Q
if false then Q else R —3 R.

Ordered pair

Pair = Boolean selector:

(M,N) = Xx.xMN;

T = AX1X0.X;

|_|,' = /\p.p7r,-

(i

Ordered pair

Pair = Boolean selector:
(M,N) = Xx.xMN;
T = AX{X2.X; (i=1,2),
M, = \p.pm (i=1,2).

[t works:

My (M, N) —5 (M, N)my -5 M.

Church's numerals

ch = n = AMx.f"(x),

0 = Mx.x;

1 = Mx.fx;

2 = Mx.f(f);

3 = MMx.f(f(fx)), etc.

Some definable functions

» Successor: succ = Anfx.f(nfx);

Some definable functions

» Successor: succ = Anfx.f(nfx);

» Addition: add = Amnfx.mf (nfx);

Some definable functions

» Successor: succ = Anfx.f(nfx);
» Addition: add = Amnfx.mf (nfx);

» Multiplication: mult = Amnfx.m(nf)x;

Some definable functions

» Successor: succ = Anfx.f(nfx);
» Addition: add = Amnfx.mf (nfx);
» Multiplication: mult = Amnfx.m(nf)x;
» Exponentiation: exp = Amnfx.mnfx;

Some

v

v

v

definable functions

Successor:
Addition:

Multiplication:

Exponentiation:

Test for zero:

succ = Anfx.f(nfx);
add = Amnfx.mf (nfx);
mult = Amnfx.m(nf)x;
exp = Amnfx.mnfx;

zero = Am.m(\y false)true;

Predecessor is definable too

p(n+1)=n, p(0)=0

Predecessor is definable too

p(n+1)=n, p(0)=0

Step = Ap.(succ(pmi), pm1)
pred = An. (nStep(0,0))m,

Predecessor is definable too

p(n+1)=n, p(0)=0

Step = Ap.(succ(pmi), pm1)
pred = An. (nStep(0,0))m,

How it works:

Predecessor is definable too

p(n+1)=n, p(0)=0

Step = Ap.(succ(pmi), pm1)
pred = An. (nStep(0,0))m,

How it works:

Step(0,0) —4 (1,0)

Predecessor is definable too

p(n+1)=n, p(0)=0

Step = Ap.(succ(pmi), pm1)
pred = An. (nStep(0,0))m,

How it works:

Predecessor is definable too

p(n+1)=n, p(0)=0

Step = Ap.(succ(pmi), pm1)
pred = An. (nStep(0,0))m,

How it works:

Step(0,0) —5 (1,0)
Step(1,0) —5 (2,1)
Step(2,1) —4 (3,2)

Predecessor is definable too

p(n+1)=n, p(0)=0

Step = Ap.(succ(pmi), pm1)
pred = An. (nStep(0,0))m,

How it works:

Step(0,0) —5 (1,0)
Step(1,0) —5 (2,1)
Step(2,1) —4 (3,2)

and so on.

Undecidability

The following are undecidable problems:

» Given M and N, does M —3 N hold?

Undecidability

The following are undecidable problems:

» Given M and N, does M —3 N hold?
» Given M and N, does M =3 N hold?

Undecidability

The following are undecidable problems:

» Given M and N, does M —3 N hold?
» Given M and N, does M =3 N hold?
» Given M, does M normalize?

Undecidability

The following are undecidable problems:

» Given M and N, does M —3 N hold?
» Given M and N, does M =3 N hold?
» Given M, does M normalize?

>

Given M, does M strongly normalize?

The standard theory

Adding equational axioms

Example

Add the axiom K = S to the equational theory
of A-calculus.

Adding equational axioms

Example

Add the axiom K = S to the equational theory
of A-calculus. Then, for every M, one proves:

M = SI(KM)I = KI(KM)I = 1.

This extension is inconsistent.

Adding equational axioms

Example

Add the axiom K = S to the equational theory
of A-calculus. Then, for every M, one proves:

M = SI(KM)I = KI(KM)I = 1.

This extension is inconsistent.

Bohm Theorem

Let M, N be 3-normal combinators with M # 3, N.
Then MP = true and NP =, false, for some P.

Béhm Trees (finite case)

AXy. X AXy. X

AZ. X y AZV. X

SN,

M = Axy.x(A\z.xzy)y N = Axy.x(Azv.xzxv)y

Bohm Trees: the difference

Axy. x Axy. x
y RN
AZ. X \ y AzZV. X y
/N VARN
V4 y V4 X v
M = Axy x(A\z.xzy)y N = Axy x(Azv.xzxv)y

Trick: Applying M to Auv. (u, v) gives \y. (\z.(z,y),y).
And components can be extracted from a pair.

Discriminating terms

M = Axy.x(Az.xzy)y N = Axy.x(\zv.xzxv)y

Discriminating terms
M = Axy.x(Az.xzy)y N = Axy.x(\zv.xzxv)y
Applying M and N to P = Auv. (u, v), then to any Q yields:

(A\z.(z,Q), Q) (Azv.(z, P)v, Q)

Discriminating terms
M = Axy.x(Az.xzy)y N = Axy.x(\zv.xzxv)y
Applying M and N to P = Auv. (u, v), then to any Q yields:
(A\z.(z,Q), Q) (Azv.{z, P)v, Q)
Next appply both to true, I, false to obtain:

Q P = \uv.(u,v)

Discriminating terms
M = Axy.x(Az.xzy)y N = Axy.x(\zv.xzxv)y
Applying M and N to P = Auv. (u, v), then to any Q yields:
(A\z.(z,Q), Q) (Azv.{z, P)v, Q)
Next appply both to true, I, false to obtain:
Q P = \uv.(u,v)
Choose @ = A\uvw. true and apply both sides to false, I, true:

true false.

The Meaning of “Value” and “Undefined”

First idea: Value = Normal form.
Undefined = without normal form.

The Meaning of “Value” and “Undefined”

First idea: Value = Normal form.
Undefined = without normal form.

Can we identify all such terms?

The Meaning of “Value” and “Undefined”

First idea: Value = Normal form.
Undefined = without normal form.

Can we identify all such terms?

No: for instance Ax.xKQ = Ax.xSQ implies K =S
(apply both to K).

The Meaning of “Value” and “Undefined”

First idea: Value = Normal form.
Undefined = without normal form.

Can we identify all such terms?

No: for instance Ax.xKQ = Ax.xSQ implies K =S
(apply both to K).

Moral: A term without normal form can still behave in
a well-defined way. In a sense it has a ,value”.

The Meaning of “Value” and “Undefined”

First idea: Value = Normal form.
Undefined = without normal form.

Can we identify all such terms?

No: for instance Ax.xKQ = Ax.xSQ implies K =S
(apply both to K).

Moral: A term without normal form can still behave in
a well-defined way. In a sense it has a ,value”.

Better idea: Value = Head normal form.
Undefined = without head normal form.

Solvability

A closed term is solvable iff MP = |, for some closed P.

Solvability

A closed term is solvable iff MP = |, for some closed P.

If FV(M) = X then M is solvable ift A\X M is solvable.

Solvability

A closed term is solvable iff MP = |, for some closed P.

If FV(M) = X then M is solvable ift A\X M is solvable.

Theorem

A term is solvable iff it has a head normal form.

Solvability

A closed term is solvable iff MP = |, for some closed P.

If FV(M) = X then M is solvable ift A\X M is solvable.

Theorem

A term is solvable iff it has a head normal form.

Proof for closed terms:

(=) If MP =4I then MP —g . If MP head normalizes
then also M must head normalize.

Solvability

A closed term is solvable iff MP = |, for some closed P.

If FV(M) = X then M is solvable ift A\X M is solvable.

Theorem

A term is solvable iff it has a head normal form.

Proof for closed terms:

(=) If MP =4I then MP —g . If MP head normalizes
then also M must head normalize.

(<) f M =5 ax2...xp. xRy ... Ry then MP ... P =1,
for P=Ay1...y¥ml

The standard theory

We identify all unsolvable terms as “undefined”.

The standard theory

We identify all unsolvable terms as “undefined”.

Which solvable terms may be now be consistently identified?

The standard theory

We identify all unsolvable terms as “undefined”.
Which solvable terms may be now be consistently identified?

We cannot classify terms by their head normal forms.
Too many of them!

The standard theory

We identify all unsolvable terms as “undefined”.
Which solvable terms may be now be consistently identified?

We cannot classify terms by their head normal forms.
Too many of them!

We can only observe their behaviour.

Observational equivalence

Terms M, N with FV(M) UFV(N) = X, are observationally
equivalent (M = N) when, for all closed P:

P(AX.M) is solvable <= P(AX.N) is solvable

Observational equivalence

Terms M, N with FV(M) UFV(N) = X, are observationally
equivalent (M = N) when, for all closed P:

P(AX.M) is solvable <= P(AX.N) is solvable

Put it differently:
C[M] is solvable <= C[N] is solvable

Observational equivalence

Terms M, N with FV(M) UFV(N) = X, are observationally
equivalent (M = N) when, for all closed P:

P(AX.M) is solvable <= P(AX.N) is solvable

Put it differently:
C[M] is solvable <= C[N] is solvable

Note: If M =, N then M = N.

Bohm Trees
BT(AX.yP; ...P,) = My

BT(P,) BT(P) - BT(P,)

If M has a hnf N then BT (M) = BT (N).
If M is unsolvable then BT (M) = L.

Example: J =Y (Afxy. x(fy))

Write ® for Afxy. x(fy)). Then:
J=Yo =5)

Example: J =Y (Afxy. x(fy))

Write ® for Afxy. x(fy)). Then:
J=Yo =5 dJ =5 \xy. x(Jy)

Example: J =Y (Afxy. x(fy))

Write ® for Afxy. x(fy)). Then:
J=Y® =5 dJ =5 Axy. x(Jy) =5 Mxyo. x(PJIyo)

Example: J =Y (Afxy. x(fy))

Write ® for Afxy. x(fy)). Then:

J=Y® =5 dJ =5 Axy. x(Jy) =5 Mxyo. x(PJIyo)
=5 A0 x(Ay1- yo(Iy1))

Example: J =Y (Afxy. x(fy))

Write ® for Afxy. x(fy)). Then:
J=Y® =5 dJ =5 Axy. x(Jy) =5 Mxyo. x(PJIyo)

=5 Axyo- x(Ay1- yo(Iy1)) =5 Mxyo. x(Ay1- yo(®Iy1)) =5 - ..

Example: J =Y (Afxy. x(fy))

Write ® for Afxy. x(fy)). Then:
J=Y® =5 dJ =5 Axy. x(Jy) =5 Mxyo. x(PJIyo)

=5 Axyo- x(Ay1- yo(Iy1)) =5 Mxyo. x(Ay1- yo(®Iy1)) =5 - ..

The tree BT (J) consists of one infinite path:

AXYo. X A1 Yo AV2. Y1 Ay3.)2

Example: J =Y (Afxy. x(fy))

The tree BT (J) consists of one infinite path:

AXyo. X AYi-Yo A2y Ay3. o

Example: J =Y (Afxy. x(fy))

The tree BT (J) consists of one infinite path:

AXyo. X AYi-Yo A2y Ay3. o

The tree BT (I) consists of a single node: Ax x

Example: J =Y (Afxy. x(fy))

The tree BT (J) consists of one infinite path:

AXYo. XAy Yo Ay2. i Ayz. 2
The tree BT (I) consists of a single node: Ax x

The first can be obtained from the second by means of
an infinite sequence of n-expansions:

Example: J =Y (Afxy. x(fy))

The tree BT (J) consists of one infinite path:

AXYo. XAy Yo Ay2. i Ayz. 2
The tree BT (I) consists of a single node: Ax x

The first can be obtained from the second by means of
an infinite sequence of n-expansions:

AXX p= AXYp. X Yo

Example: J =Y (Afxy. x(fy))

The tree BT (J) consists of one infinite path:

AXYo. XAy Yo Ay2. i Ayz. 2
The tree BT (I) consists of a single node: Ax x

The first can be obtained from the second by means of
an infinite sequence of n-expansions:

AXX g AXVo.X——Yo n¢ AXYo.X——AV1. Yo Y1

When are terms observationally equivalent?

Bohm trees B i B are n-equivalent (B ~, B’), if there are
two (possibly infinite) sequences of n-expansions:

B:Bon<—81n<—82n<—83n<—"’
B'=Byy— BBy =By =

converging to the same (possibly infinite) tree.

When are terms observationally equivalent?

Bohm trees B i B are n-equivalent (B ~, B’), if there are
two (possibly infinite) sequences of n-expansions:

B:BOTIHBlTﬁ_B27I<_B3TI<_”.
B'= By Bl =By = By =+

converging to the same (possibly infinite) tree.

Theorem

Terms M and N are observationally equivalent
if and only if BT (M) =, BT(N).

Semantics

Goal: Interpret any term M as an element [M] of some
structure A, so that M =5 N implies [M] = [N].

Semantics

Goal: Interpret any term M as an element [M] of some
structure A, so that M =5 N implies [M] = [N].

More precisely, [M] may depend on a valuation:
v: Var — A

Write [M],, for the value of M under v.

Lambda-interpretation: A= (A,-,[])

Application - is a binary operation in A;

Lambda-interpretation: A= (A,-,[])

Application - is a binary operation in A;
[]:AxA" — A
Write [M], instead of [[(M, v).

Lambda-interpretation: A= (A,-,[])

Application - is a binary operation in A;
[]:AxA" — A
Write [M], instead of [[(M, v).

Postulates:

(@) [xlv = v(x);

(b) [PQ], = [P]. - [@].:

(c) [Ax.P]y - a=[Plvx—a). for any a € A;
(d)

d) If V’FV(P) = U|FV(P)v then |['D]]v = HP]]u-

Extensionality

Write a~ bwhen a-c=b-c, for all c.

Extensionality

Write a~ bwhen a-c=b-c, for all c.

Extensional interpretation: a ~ b implies a = b, for all a, b.

Extensionality

Write a~ bwhen a-c=b-c, for all c.

Extensional interpretation: a ~ b implies a = b, for all a, b.

Weakly extensional interpretation:

[Ax.M], = [Ax.N], implies [Ax.M], = [Ax.N],, for all N, v.

Extensionality

Write a~ bwhen a-¢c=b-c, forall c.
Extensional interpretation: a ~ b implies a = b, for all a, b.

Weakly extensional interpretation:

[Ax.M], = [Ax.N], implies [Ax.M], = [Ax.N],, for all N, v.

Meaning: Abstraction makes sense algebraically.

(NB [[/\XM]]V =~ II)\XN]]V iff IIM]]V[X,_,Q] = IIN]]V[X,_)Q], all a.)

Lambda-model

Lambda-model: Weakly extensional lambda-interpretation:

[Mx.M], = [Ax.N], implies [XAx.M], = [A\x.N],

Very Important Lemma

Lemma

In every lambda-model,

[M[x := NI = [M]vpxeny.)-

Very Important Lemma

Lemma

In every lambda-model,

[Mlx == Ny = [IM]vje—tm1-
Proof: Induction wrt M. Case of A\ with x & FV(N).
[0 P)lx == Mlugepug, - 2 = Dy-Plx = V], - a
= [Plx:= Nlvpya) = [PLvty el M1y
= [Plvy—ax—ing) = [NY-Pluix—gag. - @, for all a.
Therefore [(Ay P)[x := N]]vix—gng,) = [(AY-P)lvix—ng.1-

Soundness

Proposition
Every lambda-model is a “lambda-algebra”:
M =5 N implies [M], = [N].
Proof: Induction wrt M =5 N. Non-immediate cases are two:
(Beta)
[(Ax-P)Q], = [2x.Ply - [Q)y = [Plvjx—pa1 = [Plx := Q]I

Soundness

Proposition
Every lambda-model is a "lambda-algebra’:
M =5 N implies [M], = [N].
Proof: Induction wrt M =5 N. Non-immediate cases are two:
(Beta)
[(Ax-P)Q], = [2x.Ply - [Q)y = [Plvjx—pa1 = [Plx := Q]I
(Xi)
Let P =5 Q and let M = Ax.P, N = Ax.Q. Then
M), - a=[Plixoa = [Qlvix-a = [N]. - a for all a.

Completeness

Theorem
The following are equivalent:
1) M =8 N,'
2) A= M =N, for every lambda-model A.

Proof.
(1)=-(2) By soundness.

(2)=-(1) Because term model is a lambda-model.

Complete partial orders

Let (A, <) be a partial order.

A subset B C A is directed when for every a, b € B there is
c € Bwith a,b < c.

Complete partial orders

Let (A, <) be a partial order.

A subset B C A is directed when for every a, b € B there is
c € Bwith a,b < c.

The set A is a complete partial order (cpo) when every
directed subset has a supremum.

Complete partial orders

Let (A, <) be a partial order.

A subset B C A is directed when for every a, b € B there is
c € Bwith a,b < c.

The set A is a complete partial order (cpo) when every
directed subset has a supremum.

It follows that every cpo has a least element 1. = sup @.

Complete partial orders

Let (A, <) and (B, <) be cpos, and f : A — B.

Then f is monotone if a < &’ implies f(a) < f(a).

Complete partial orders

Let (A, <) and (B, <) be cpos, and f : A — B.
Then f is monotone if a < &’ implies f(a) < f(a).

And f is continuous if sup f(C) = f(sup C)
for every nonempty directed C C A.

Complete partial orders

Let (A, <) and (B, <) be cpos, and f : A — B.
Then f is monotone if a < &’ implies f(a) < f(a).

And f is continuous if sup f(C) = f(sup C)
for every nonempty directed C C A.

Fact: Every continuous function is monotone.

Complete partial orders

Let (A, <) and (B, <) be cpos, and f : A — B.
Then f is monotone if a < &’ implies f(a) < f(a).

And f is continuous if sup f(C) = f(sup C)
for every nonempty directed C C A.

Fact: Every continuous function is monotone.

[A — B] is the set of all continuous functions from A to B

Complete partial orders

If (A, <) and (B, <) are cpos then:

» The product A x B is a cpo with
(a,b) < (d,b)iffa<a and b<P.

» The function space [A — B] is a cpo with
f <giff Va.f(a) < g(a).

Continuous functions

Lemma

A function f : A x B — C is continuous iff it is continuous
wrt both arguments, i.e. all functions of the form \a. f(a, b)
and Ab. f(a, b) are continuous.

Continuous functions
Lemma

A function f : A x B — C is continuous iff it is continuous
wrt both arguments, i.e. all functions of the form \a. f(a, b)
and Ab. f(a, b) are continuous.

Proof.
(<) Take X C A x B directed. Let X; = m;(X) for i =1, 2.

Continuous functions

Lemma

A function f : A x B — C is continuous iff it is continuous
wrt both arguments, i.e. all functions of the form \a. f(a, b)
and Ab. f(a, b) are continuous.

Proof.
(<) Take X C A x B directed. Let X; = m;(X) for i =1, 2.
Step 1: If (a,b) € X; x X3 then (a,b) < (d',b) € X.

Continuous functions

Lemma

A function f : A x B — C is continuous iff it is continuous
wrt both arguments, i.e. all functions of the form \a. f(a, b)
and Ab. f(a, b) are continuous.

Proof.
(<) Take X C A x B directed. Let X; = m;(X) for i =1, 2.
Step 1: If (a,b) € X; x X3 then (a,b) < (d',b) € X.

Step 2: Therefore sup X = (sup Xi,sup X3) = (ag, bo).
We show that (f(ap), f(bo)) is the supremum of f(X).

Continuous functions

Lemma

A function f : A x B — C is continuous iff it is continuous
wrt both arguments, i.e. all functions of the form \a. f(a, b)
and Ab. f(a, b) are continuous.

Proof.
(<) Take X C A x B directed. Let X; = m;(X) for i =1, 2.
Step 1: If (a,b) € X; x X3 then (a,b) < (d',b) € X.

Step 2: Therefore sup X = (sup Xi,sup X3) = (ag, bo).
We show that (f(ap), f(bo)) is the supremum of f(X).
Let ¢ > f(X), then ¢ > f(a, b) for all (a,b) € X; x X>.

Continuous functions
Lemma

A function f : A x B — C is continuous iff it is continuous
wrt both arguments, i.e. all functions of the form \a. f(a, b)
and Ab. f(a, b) are continuous.

Proof.
(<) Take X C A x B directed. Let X; = m;(X) for i =1, 2.
Step 1: If (a,b) € X; x X3 then (a,b) < (d',b) € X.

Step 2: Therefore sup X = (sup Xi,sup X3) = (ag, bo).
We show that (f(ap), f(bo)) is the supremum of f(X).

Let ¢ > f(X), then ¢ > f(a, b) for all (a,b) € X; x X>.
Fix a, to get ¢ > sup, f(a,b) = f(a, by).

Continuous functions
Lemma

A function f : A x B — C is continuous iff it is continuous
wrt both arguments, i.e. all functions of the form \a. f(a, b)
and Ab. f(a, b) are continuous.

Proof.

(<) Take X C A x B directed. Let X; = m;(X) for i =1, 2.
Step 1: If (a,b) € X; x X3 then (a,b) < (d',b) € X.
Step 2: Therefore sup X = (sup Xi,sup X3) = (ag, bo).

We show that (f(ap), f(bo)) is the supremum of f(X).

Let ¢ > f(X), then ¢ > f(a, b) for all (a,b) € X; x X>.

Fix a, to get ¢ > sup, f(a,b) = f(a, by).

Fix by, to get ¢ > sup, f(a, by) = f(ao, bo).

Continuous functions

Lemma

The application App : [A — B] x A — B is continuous.

Proof: Uses the previous lemma.

Lemma

The abstraction Abs : [(Ax B) — C] — [A— [B— (]],
given by Abs(F)(a)(b) = F(a, b), is continuous.

Reflexive cpo

The cpo D is reflexive iff there are continuous functions
F:D—[D—D]and G :[D — D] — D,
with Fo G = id[D_)D].

Reflexive cpo

The cpo D is reflexive iff there are continuous functions
F:D—[D—D]and G :[D — D] — D,
with Fo G = id[D_)D].

Then F must be onto and G is injective.

Reflexive cpo

The cpo D is reflexive iff there are continuous functions
F:D—[D—D]and G :[D — D] — D,
with Fo G = id[D_)D].

Then F must be onto and G is injective.

The following are equivalent conditions:

“GoF =idp", “G onto”, “F injective”.

Reflexive cpo

F:D—-[D—-D], G:[D—D]—D, FoG-=id.

Reflexive cpo

F:D—-[D—-D], G:[D—D]—D, FoG-=id.

Define application as a- b = F(a)(b) so that G(f) - a = f(a).

Reflexive cpo

F:D—-[D—-D], G:[D—D]—D, FoG-=id.

Define application as a- b = F(a)(b) so that G(f) - a = f(a).
Define interpretation as
> [x1y = v(x);

> [PQ]. = [P]v - [Q].:
> |[)\XP]]V == G()}\a.[[P]]V[XHa]).

Reflexive cpo

F:D—-[D—-D], G:[D—D]—D, FoG-=id.

Define application as a- b = F(a)(b) so that G(f) - a = f(a).
Define interpretation as

> [x], = v(x);

> [PQl, = IP1. - [Q.;

> [Mx.P], = G(Aa.[P]yjx—a)-

Fact: This is a (well-defined) lambda interpretation.
(Use continuity of App and Abs.)

Reflexive cpo

Theorem

A reflexive cpo is a lambda-model.

Reflexive cpo

Theorem

A reflexive cpo is a lambda-model.

Proof.

Prove weak extensionality: let [Ax.M], - a = [Ax.N], - a, all a.
Note that [Ax.M], - a = G(Aa.[M]yjx—q)) - @ = [M]vjx—a).
and thus Na.[M],[x—-s = Aa.[N]y[x—s. By the injectivity

of G, it follows that [Ax.M], = [Ax.N],. O

