
Rachunek lambda - ci¡g dalszy

18 marca 2013

Siªa wyrazu: logika zdaniowa

true = λxy .x false = λxy .y

if P then Q else R = PQR .

It works:

if true then Q else R �β Q

if false then Q else R �β R .

◦

Ordered pair

Pair = Boolean selector:

〈M,N〉 = λx .xMN;

πi = λx1x2.xi (i = 1, 2);

Πi = λp. pπi (i = 1, 2).

It works:

Π1〈M,N〉 →β 〈M,N〉π1 �β M.

◦

Ordered pair

Pair = Boolean selector:

〈M,N〉 = λx .xMN;

πi = λx1x2.xi (i = 1, 2);

Πi = λp. pπi (i = 1, 2).

It works:

Π1〈M,N〉 →β 〈M,N〉π1 �β M.

◦

Church's numerals

cn = n = λfx .f n(x),

0 = λfx .x ;
1 = λfx .fx ;
2 = λfx .f (fx);
3 = λfx .f (f (fx)), etc.

◦

Some de�nable functions

I Successor: succ = λnfx .f (nfx);

I Addition: add = λmnfx .mf (nfx);

I Multiplication: mult = λmnfx .m(nf)x ;

I Exponentiation: exp = λmnfx .mnfx ;

I Test for zero: zero = λm.m(λy .false)true;

◦

Some de�nable functions

I Successor: succ = λnfx .f (nfx);

I Addition: add = λmnfx .mf (nfx);

I Multiplication: mult = λmnfx .m(nf)x ;

I Exponentiation: exp = λmnfx .mnfx ;

I Test for zero: zero = λm.m(λy .false)true;

◦

Some de�nable functions

I Successor: succ = λnfx .f (nfx);

I Addition: add = λmnfx .mf (nfx);

I Multiplication: mult = λmnfx .m(nf)x ;

I Exponentiation: exp = λmnfx .mnfx ;

I Test for zero: zero = λm.m(λy .false)true;

◦

Some de�nable functions

I Successor: succ = λnfx .f (nfx);

I Addition: add = λmnfx .mf (nfx);

I Multiplication: mult = λmnfx .m(nf)x ;

I Exponentiation: exp = λmnfx .mnfx ;

I Test for zero: zero = λm.m(λy .false)true;

◦

Some de�nable functions

I Successor: succ = λnfx .f (nfx);

I Addition: add = λmnfx .mf (nfx);

I Multiplication: mult = λmnfx .m(nf)x ;

I Exponentiation: exp = λmnfx .mnfx ;

I Test for zero: zero = λm.m(λy .false)true;

◦

Predecessor is de�nable too

p(n + 1) = n, p(0) = 0

Step = λp.〈succ(pπ1), pπ1〉

pred = λn. (n Step〈0,0〉)π2

How it works:

Step〈0,0〉�β 〈1,0〉
Step〈1,0〉�β 〈2,1〉
Step〈2,1〉�β 〈3,2〉,

and so on.

◦

Predecessor is de�nable too

p(n + 1) = n, p(0) = 0

Step = λp.〈succ(pπ1), pπ1〉

pred = λn. (n Step〈0,0〉)π2

How it works:

Step〈0,0〉�β 〈1,0〉
Step〈1,0〉�β 〈2,1〉
Step〈2,1〉�β 〈3,2〉,

and so on.

◦

Predecessor is de�nable too

p(n + 1) = n, p(0) = 0

Step = λp.〈succ(pπ1), pπ1〉

pred = λn. (n Step〈0,0〉)π2

How it works:

Step〈0,0〉�β 〈1,0〉
Step〈1,0〉�β 〈2,1〉
Step〈2,1〉�β 〈3,2〉,

and so on.

◦

Predecessor is de�nable too

p(n + 1) = n, p(0) = 0

Step = λp.〈succ(pπ1), pπ1〉

pred = λn. (n Step〈0,0〉)π2

How it works:

Step〈0,0〉�β 〈1,0〉

Step〈1,0〉�β 〈2,1〉
Step〈2,1〉�β 〈3,2〉,

and so on.

◦

Predecessor is de�nable too

p(n + 1) = n, p(0) = 0

Step = λp.〈succ(pπ1), pπ1〉

pred = λn. (n Step〈0,0〉)π2

How it works:

Step〈0,0〉�β 〈1,0〉
Step〈1,0〉�β 〈2,1〉

Step〈2,1〉�β 〈3,2〉,

and so on.

◦

Predecessor is de�nable too

p(n + 1) = n, p(0) = 0

Step = λp.〈succ(pπ1), pπ1〉

pred = λn. (n Step〈0,0〉)π2

How it works:

Step〈0,0〉�β 〈1,0〉
Step〈1,0〉�β 〈2,1〉
Step〈2,1〉�β 〈3,2〉,

and so on.

◦

Predecessor is de�nable too

p(n + 1) = n, p(0) = 0

Step = λp.〈succ(pπ1), pπ1〉

pred = λn. (n Step〈0,0〉)π2

How it works:

Step〈0,0〉�β 〈1,0〉
Step〈1,0〉�β 〈2,1〉
Step〈2,1〉�β 〈3,2〉,

and so on.

◦

Undecidability

The following are undecidable problems:

I Given M and N, does M �β N hold?

I Given M and N, does M =β N hold?

I Given M, does M normalize?

I Given M, does M strongly normalize?

◦

Undecidability

The following are undecidable problems:

I Given M and N, does M �β N hold?

I Given M and N, does M =β N hold?

I Given M, does M normalize?

I Given M, does M strongly normalize?

◦

Undecidability

The following are undecidable problems:

I Given M and N, does M �β N hold?

I Given M and N, does M =β N hold?

I Given M, does M normalize?

I Given M, does M strongly normalize?

◦

Undecidability

The following are undecidable problems:

I Given M and N, does M �β N hold?

I Given M and N, does M =β N hold?

I Given M, does M normalize?

I Given M, does M strongly normalize?

◦

The standard theory

◦

Adding equational axioms

Example

Add the axiom K = S to the equational theory
of λ-calculus.

Then, for every M, one proves:

M = SI(KM)I = KI(KM)I = I.

This extension is inconsistent.

Böhm Theorem

Let M,N be β-normal combinators with M 6=βη N.

Then M~P =β true and N~P =β false, for some ~P.

◦

Adding equational axioms

Example

Add the axiom K = S to the equational theory
of λ-calculus. Then, for every M, one proves:

M = SI(KM)I = KI(KM)I = I.

This extension is inconsistent.

Böhm Theorem

Let M,N be β-normal combinators with M 6=βη N.

Then M~P =β true and N~P =β false, for some ~P.

◦

Adding equational axioms

Example

Add the axiom K = S to the equational theory
of λ-calculus. Then, for every M, one proves:

M = SI(KM)I = KI(KM)I = I.

This extension is inconsistent.

Böhm Theorem

Let M,N be β-normal combinators with M 6=βη N.

Then M~P =β true and N~P =β false, for some ~P.

◦

Böhm Trees (�nite case)

λxy . x

zzzzzzzzz

@@@@@@@ λxy . x

xxxxxxxxx

;;;;;;;;

λz . x

�������

BBBBBBBB y λzv . x

�������

DDDDDDDDD y

z y z x v

M = λxy .x(λz .xzy)y N = λxy .x(λzv .xzxv)y

◦

Böhm Trees: the di�erence

λxy . x

zzzzzzzzz

zzzzzzzzz

@@@@@@@ λxy . x

xxxxxxxxx

xxxxxxxxx

;;;;;;;;

λz . x

�������

BBBBBBBB

BBBBBBBB y λzv . x

�������

DDDDDDDDD y

z y z x v

M = λxy .x(λz .xzy)y N = λxy .x(λzv .xzxv)y

Trick: Applying M to λuv . 〈u, v〉 gives λy . 〈λz .〈z , y〉, y〉.
And components can be extracted from a pair.

◦

Discriminating terms

M = λxy .x(λz .xzy)y N = λxy .x(λzv .xzxv)y

Applying M and N to P = λuv . 〈u, v〉, then to any Q yields:

〈λz .〈z ,Q〉,Q〉 〈λzv .〈z ,P〉v , Q〉

Next appply both to true, I, false to obtain:

Q P = λuv .〈u, v〉

Choose Q = λuvw . true and apply both sides to false, I, true:

true false.

◦

Discriminating terms

M = λxy .x(λz .xzy)y N = λxy .x(λzv .xzxv)y

Applying M and N to P = λuv . 〈u, v〉, then to any Q yields:

〈λz .〈z ,Q〉,Q〉 〈λzv .〈z ,P〉v , Q〉

Next appply both to true, I, false to obtain:

Q P = λuv .〈u, v〉

Choose Q = λuvw . true and apply both sides to false, I, true:

true false.

◦

Discriminating terms

M = λxy .x(λz .xzy)y N = λxy .x(λzv .xzxv)y

Applying M and N to P = λuv . 〈u, v〉, then to any Q yields:

〈λz .〈z ,Q〉,Q〉 〈λzv .〈z ,P〉v , Q〉

Next appply both to true, I, false to obtain:

Q P = λuv .〈u, v〉

Choose Q = λuvw . true and apply both sides to false, I, true:

true false.

◦

Discriminating terms

M = λxy .x(λz .xzy)y N = λxy .x(λzv .xzxv)y

Applying M and N to P = λuv . 〈u, v〉, then to any Q yields:

〈λz .〈z ,Q〉,Q〉 〈λzv .〈z ,P〉v , Q〉

Next appply both to true, I, false to obtain:

Q P = λuv .〈u, v〉

Choose Q = λuvw . true and apply both sides to false, I, true:

true false.

◦

The Meaning of �Value� and �Unde�ned�

First idea: Value = Normal form.
Unde�ned = without normal form.

Can we identify all such terms?

No: for instance λx .xKΩ = λx .xSΩ implies K = S

(apply both to K).

Moral: A term without normal form can still behave in
a well-de�ned way. In a sense it has a �value�.

Better idea: Value = Head normal form.
Unde�ned = without head normal form.

◦

The Meaning of �Value� and �Unde�ned�

First idea: Value = Normal form.
Unde�ned = without normal form.

Can we identify all such terms?

No: for instance λx .xKΩ = λx .xSΩ implies K = S

(apply both to K).

Moral: A term without normal form can still behave in
a well-de�ned way. In a sense it has a �value�.

Better idea: Value = Head normal form.
Unde�ned = without head normal form.

◦

The Meaning of �Value� and �Unde�ned�

First idea: Value = Normal form.
Unde�ned = without normal form.

Can we identify all such terms?

No: for instance λx .xKΩ = λx .xSΩ implies K = S

(apply both to K).

Moral: A term without normal form can still behave in
a well-de�ned way. In a sense it has a �value�.

Better idea: Value = Head normal form.
Unde�ned = without head normal form.

◦

The Meaning of �Value� and �Unde�ned�

First idea: Value = Normal form.
Unde�ned = without normal form.

Can we identify all such terms?

No: for instance λx .xKΩ = λx .xSΩ implies K = S

(apply both to K).

Moral: A term without normal form can still behave in
a well-de�ned way. In a sense it has a �value�.

Better idea: Value = Head normal form.
Unde�ned = without head normal form.

◦

The Meaning of �Value� and �Unde�ned�

First idea: Value = Normal form.
Unde�ned = without normal form.

Can we identify all such terms?

No: for instance λx .xKΩ = λx .xSΩ implies K = S

(apply both to K).

Moral: A term without normal form can still behave in
a well-de�ned way. In a sense it has a �value�.

Better idea: Value = Head normal form.
Unde�ned = without head normal form.

◦

Solvability

A closed term is solvable i� M~P =β I, for some closed ~P .

If FV(M) = ~x then M is solvable i� λ~x M is solvable.

Theorem

A term is solvable i� it has a head normal form.

Proof for closed terms:

(⇒) If M~P =β I then M~P �β I. If M~P head normalizes
then also M must head normalize.

(⇐) If M =β λx1x2 . . . xn.xiR1 . . .Rm then MP . . .P = I,
for P = λy1 . . . ym.I.

◦

Solvability

A closed term is solvable i� M~P =β I, for some closed ~P .

If FV(M) = ~x then M is solvable i� λ~x M is solvable.

Theorem

A term is solvable i� it has a head normal form.

Proof for closed terms:

(⇒) If M~P =β I then M~P �β I. If M~P head normalizes
then also M must head normalize.

(⇐) If M =β λx1x2 . . . xn.xiR1 . . .Rm then MP . . .P = I,
for P = λy1 . . . ym.I.

◦

Solvability

A closed term is solvable i� M~P =β I, for some closed ~P .

If FV(M) = ~x then M is solvable i� λ~x M is solvable.

Theorem

A term is solvable i� it has a head normal form.

Proof for closed terms:

(⇒) If M~P =β I then M~P �β I. If M~P head normalizes
then also M must head normalize.

(⇐) If M =β λx1x2 . . . xn.xiR1 . . .Rm then MP . . .P = I,
for P = λy1 . . . ym.I.

◦

Solvability

A closed term is solvable i� M~P =β I, for some closed ~P .

If FV(M) = ~x then M is solvable i� λ~x M is solvable.

Theorem

A term is solvable i� it has a head normal form.

Proof for closed terms:

(⇒) If M~P =β I then M~P �β I. If M~P head normalizes
then also M must head normalize.

(⇐) If M =β λx1x2 . . . xn.xiR1 . . .Rm then MP . . .P = I,
for P = λy1 . . . ym.I.

◦

Solvability

A closed term is solvable i� M~P =β I, for some closed ~P .

If FV(M) = ~x then M is solvable i� λ~x M is solvable.

Theorem

A term is solvable i� it has a head normal form.

Proof for closed terms:

(⇒) If M~P =β I then M~P �β I. If M~P head normalizes
then also M must head normalize.

(⇐) If M =β λx1x2 . . . xn.xiR1 . . .Rm then MP . . .P = I,
for P = λy1 . . . ym.I.

◦

The standard theory

We identify all unsolvable terms as �unde�ned�.

Which solvable terms may be now be consistently identi�ed?

We cannot classify terms by their head normal forms.
Too many of them!

We can only observe their behaviour.

◦

The standard theory

We identify all unsolvable terms as �unde�ned�.

Which solvable terms may be now be consistently identi�ed?

We cannot classify terms by their head normal forms.
Too many of them!

We can only observe their behaviour.

◦

The standard theory

We identify all unsolvable terms as �unde�ned�.

Which solvable terms may be now be consistently identi�ed?

We cannot classify terms by their head normal forms.
Too many of them!

We can only observe their behaviour.

◦

The standard theory

We identify all unsolvable terms as �unde�ned�.

Which solvable terms may be now be consistently identi�ed?

We cannot classify terms by their head normal forms.
Too many of them!

We can only observe their behaviour.

◦

Observational equivalence

Terms M, N with FV(M) ∪ FV(N) = ~x , are observationally
equivalent (M ≡ N) when, for all closed P :

P(λ~x .M) is solvable ⇐⇒ P(λ~x .N) is solvable

Put it di�erently:

C [M] is solvable ⇐⇒ C [N] is solvable

Note: If M =η N then M ≡ N.

◦

Observational equivalence

Terms M, N with FV(M) ∪ FV(N) = ~x , are observationally
equivalent (M ≡ N) when, for all closed P :

P(λ~x .M) is solvable ⇐⇒ P(λ~x .N) is solvable

Put it di�erently:

C [M] is solvable ⇐⇒ C [N] is solvable

Note: If M =η N then M ≡ N.

◦

Observational equivalence

Terms M, N with FV(M) ∪ FV(N) = ~x , are observationally
equivalent (M ≡ N) when, for all closed P :

P(λ~x .M) is solvable ⇐⇒ P(λ~x .N) is solvable

Put it di�erently:

C [M] is solvable ⇐⇒ C [N] is solvable

Note: If M =η N then M ≡ N.

◦

Böhm Trees

BT (λ~x .yP1 . . .Pn) = λ~x . y

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

�������������������������

<<<<<<<<<<<<<<<<<<<<<<<<<<

BT (P1) BT (P2) BT (Pn)

If M has a hnf N then BT (M) = BT (N).

If M is unsolvable then BT (M) = ⊥.

◦

Example: J = Y(λfxy . x(fy))

Write Φ for λfxy . x(fy)). Then:

J = YΦ =β ΦJ

=β λxy . x(Jy) =β λxy0. x(ΦJy0)
=β λxy0. x(λy1. y0(Jy1)) =β λxy0. x(λy1. y0(ΦJy1)) =β . . .

The tree BT (J) consists of one in�nite path:

λxy0. x��λy1. y0��λy2. y1��λy3. y2�� · · ·

◦

Example: J = Y(λfxy . x(fy))

Write Φ for λfxy . x(fy)). Then:

J = YΦ =β ΦJ =β λxy . x(Jy)

=β λxy0. x(ΦJy0)
=β λxy0. x(λy1. y0(Jy1)) =β λxy0. x(λy1. y0(ΦJy1)) =β . . .

The tree BT (J) consists of one in�nite path:

λxy0. x��λy1. y0��λy2. y1��λy3. y2�� · · ·

◦

Example: J = Y(λfxy . x(fy))

Write Φ for λfxy . x(fy)). Then:

J = YΦ =β ΦJ =β λxy . x(Jy) =β λxy0. x(ΦJy0)

=β λxy0. x(λy1. y0(Jy1)) =β λxy0. x(λy1. y0(ΦJy1)) =β . . .

The tree BT (J) consists of one in�nite path:

λxy0. x��λy1. y0��λy2. y1��λy3. y2�� · · ·

◦

Example: J = Y(λfxy . x(fy))

Write Φ for λfxy . x(fy)). Then:

J = YΦ =β ΦJ =β λxy . x(Jy) =β λxy0. x(ΦJy0)
=β λxy0. x(λy1. y0(Jy1))

=β λxy0. x(λy1. y0(ΦJy1)) =β . . .

The tree BT (J) consists of one in�nite path:

λxy0. x��λy1. y0��λy2. y1��λy3. y2�� · · ·

◦

Example: J = Y(λfxy . x(fy))

Write Φ for λfxy . x(fy)). Then:

J = YΦ =β ΦJ =β λxy . x(Jy) =β λxy0. x(ΦJy0)
=β λxy0. x(λy1. y0(Jy1)) =β λxy0. x(λy1. y0(ΦJy1)) =β . . .

The tree BT (J) consists of one in�nite path:

λxy0. x��λy1. y0��λy2. y1��λy3. y2�� · · ·

◦

Example: J = Y(λfxy . x(fy))

Write Φ for λfxy . x(fy)). Then:

J = YΦ =β ΦJ =β λxy . x(Jy) =β λxy0. x(ΦJy0)
=β λxy0. x(λy1. y0(Jy1)) =β λxy0. x(λy1. y0(ΦJy1)) =β . . .

The tree BT (J) consists of one in�nite path:

λxy0. x��λy1. y0��λy2. y1��λy3. y2�� · · ·

◦

Example: J = Y(λfxy . x(fy))

The tree BT (J) consists of one in�nite path:

λxy0. x��λy1. y0��λy2. y1��λy3. y2�� · · ·

The tree BT (I) consists of a single node: λx x

The �rst can be obtained from the second by means of
an in�nite sequence of η-expansions:

λx x η← λxy0. x��y0 η← λxy0. x��λy1. y0��y1

◦

Example: J = Y(λfxy . x(fy))

The tree BT (J) consists of one in�nite path:

λxy0. x��λy1. y0��λy2. y1��λy3. y2�� · · ·

The tree BT (I) consists of a single node: λx x

The �rst can be obtained from the second by means of
an in�nite sequence of η-expansions:

λx x η← λxy0. x��y0 η← λxy0. x��λy1. y0��y1

◦

Example: J = Y(λfxy . x(fy))

The tree BT (J) consists of one in�nite path:

λxy0. x��λy1. y0��λy2. y1��λy3. y2�� · · ·

The tree BT (I) consists of a single node: λx x

The �rst can be obtained from the second by means of
an in�nite sequence of η-expansions:

λx x η← λxy0. x��y0 η← λxy0. x��λy1. y0��y1

◦

Example: J = Y(λfxy . x(fy))

The tree BT (J) consists of one in�nite path:

λxy0. x��λy1. y0��λy2. y1��λy3. y2�� · · ·

The tree BT (I) consists of a single node: λx x

The �rst can be obtained from the second by means of
an in�nite sequence of η-expansions:

λx x η← λxy0. x��y0

η← λxy0. x��λy1. y0��y1

◦

Example: J = Y(λfxy . x(fy))

The tree BT (J) consists of one in�nite path:

λxy0. x��λy1. y0��λy2. y1��λy3. y2�� · · ·

The tree BT (I) consists of a single node: λx x

The �rst can be obtained from the second by means of
an in�nite sequence of η-expansions:

λx x η← λxy0. x��y0 η← λxy0. x��λy1. y0��y1

◦

When are terms observationally equivalent?

Böhm trees B i B ′ are η-equivalent (B ≈η B ′), if there are
two (possibly in�nite) sequences of η-expansions:

B = B0 η← B1 η← B2 η← B3 η← · · ·

B ′ = B ′
0 η← B ′

1 η← B ′
2 η← B ′

3 η← · · ·

converging to the same (possibly in�nite) tree.

Theorem

Terms M and N are observationally equivalent
if and only if BT (M) ≈η BT (N).

◦

When are terms observationally equivalent?

Böhm trees B i B ′ are η-equivalent (B ≈η B ′), if there are
two (possibly in�nite) sequences of η-expansions:

B = B0 η← B1 η← B2 η← B3 η← · · ·

B ′ = B ′
0 η← B ′

1 η← B ′
2 η← B ′

3 η← · · ·

converging to the same (possibly in�nite) tree.

Theorem

Terms M and N are observationally equivalent
if and only if BT (M) ≈η BT (N).

◦

Semantics

Goal: Interpret any term M as an element [[M]] of some
structure A, so that M =β N implies [[M]] = [[N]].

More precisely, [[M]] may depend on a valuation:

v : Var → A.

Write [[M]]v , for the value of M under v .

◦

Semantics

Goal: Interpret any term M as an element [[M]] of some
structure A, so that M =β N implies [[M]] = [[N]].

More precisely, [[M]] may depend on a valuation:

v : Var → A.

Write [[M]]v , for the value of M under v .

◦

Lambda-interpretation: A = 〈A, ·, [[]] 〉

Application · is a binary operation in A;

[[]] : Λ× AVar → A.

Write [[M]]v instead of [[]](M, v).

Postulates:

(a) [[x]]v = v(x);

(b) [[PQ]]v = [[P]]v · [[Q]]v ;

(c) [[λx .P]]v · a = [[P]]v [x 7→a], for any a ∈ A;

(d) If v |FV(P) = u|FV(P), then [[P]]v = [[P]]u.

◦

Lambda-interpretation: A = 〈A, ·, [[]] 〉

Application · is a binary operation in A;

[[]] : Λ× AVar → A.

Write [[M]]v instead of [[]](M, v).

Postulates:

(a) [[x]]v = v(x);

(b) [[PQ]]v = [[P]]v · [[Q]]v ;

(c) [[λx .P]]v · a = [[P]]v [x 7→a], for any a ∈ A;

(d) If v |FV(P) = u|FV(P), then [[P]]v = [[P]]u.

◦

Lambda-interpretation: A = 〈A, ·, [[]] 〉

Application · is a binary operation in A;

[[]] : Λ× AVar → A.

Write [[M]]v instead of [[]](M, v).

Postulates:

(a) [[x]]v = v(x);

(b) [[PQ]]v = [[P]]v · [[Q]]v ;

(c) [[λx .P]]v · a = [[P]]v [x 7→a], for any a ∈ A;

(d) If v |FV(P) = u|FV(P), then [[P]]v = [[P]]u.

◦

Extensionality

Write a ≈ b when a · c = b · c , for all c .

Extensional interpretation: a ≈ b implies a = b, for all a, b.

Weakly extensional interpretation:

[[λx .M]]v ≈ [[λx .N]]v implies [[λx .M]]v = [[λx .N]]v , for all N, v .

Meaning: Abstraction makes sense algebraically.

(N.B. [[λx .M]]v ≈ [[λx .N]]v i� [[M]]v [x 7→a] = [[N]]v [x 7→a], all a.)

◦

Extensionality

Write a ≈ b when a · c = b · c , for all c .

Extensional interpretation: a ≈ b implies a = b, for all a, b.

Weakly extensional interpretation:

[[λx .M]]v ≈ [[λx .N]]v implies [[λx .M]]v = [[λx .N]]v , for all N, v .

Meaning: Abstraction makes sense algebraically.

(N.B. [[λx .M]]v ≈ [[λx .N]]v i� [[M]]v [x 7→a] = [[N]]v [x 7→a], all a.)

◦

Extensionality

Write a ≈ b when a · c = b · c , for all c .

Extensional interpretation: a ≈ b implies a = b, for all a, b.

Weakly extensional interpretation:

[[λx .M]]v ≈ [[λx .N]]v implies [[λx .M]]v = [[λx .N]]v , for all N, v .

Meaning: Abstraction makes sense algebraically.

(N.B. [[λx .M]]v ≈ [[λx .N]]v i� [[M]]v [x 7→a] = [[N]]v [x 7→a], all a.)

◦

Extensionality

Write a ≈ b when a · c = b · c , for all c .

Extensional interpretation: a ≈ b implies a = b, for all a, b.

Weakly extensional interpretation:

[[λx .M]]v ≈ [[λx .N]]v implies [[λx .M]]v = [[λx .N]]v , for all N, v .

Meaning: Abstraction makes sense algebraically.

(N.B. [[λx .M]]v ≈ [[λx .N]]v i� [[M]]v [x 7→a] = [[N]]v [x 7→a], all a.)

◦

Lambda-model

Lambda-model : Weakly extensional lambda-interpretation:

[[λx .M]]v ≈ [[λx .N]]v implies [[λx .M]]v = [[λx .N]]v

◦

Very Important Lemma

Lemma

In every lambda-model,

[[M[x := N]]]v = [[M]]v [x 7→[[N]]v].

Proof: Induction wrt M. Case of λ with x 6∈ FV(N).

[[(λy P)[x := N]]]v [x 7→[[N]]v] · a = [[λy .P[x := N]]]v · a

= [[P[x := N]]]v [y 7→a] = [[P]]v [y 7→a][x 7→[[N]]v [y 7→a]]

= [[P]]v [y 7→a][x 7→[[N]]v] = [[λy .P]]v [x 7→[[N]]v] · a, for all a.

Therefore [[(λy P)[x := N]]]v [x 7→[[N]]v] = [[(λy .P)]]v [x 7→[[N]]v].

◦

Very Important Lemma

Lemma

In every lambda-model,

[[M[x := N]]]v = [[M]]v [x 7→[[N]]v].

Proof: Induction wrt M. Case of λ with x 6∈ FV(N).

[[(λy P)[x := N]]]v [x 7→[[N]]v] · a = [[λy .P[x := N]]]v · a

= [[P[x := N]]]v [y 7→a] = [[P]]v [y 7→a][x 7→[[N]]v [y 7→a]]

= [[P]]v [y 7→a][x 7→[[N]]v] = [[λy .P]]v [x 7→[[N]]v] · a, for all a.

Therefore [[(λy P)[x := N]]]v [x 7→[[N]]v] = [[(λy .P)]]v [x 7→[[N]]v].

◦

Soundness

Proposition

Every lambda-model is a �lambda-algebra�:

M =β N implies [[M]]v = [[N]]v

Proof: Induction wrt M =β N. Non-immediate cases are two:

(Beta)

[[(λx .P)Q]]v = [[λx .P]]v · [[Q]]v = [[P]]v [x 7→[[Q]]v] = [[P[x := Q]]]v .

(Xi)

Let P =β Q and let M = λx .P , N = λx .Q. Then

[[M]]v · a = [[P]]v [x 7→a] = [[Q]]v [x 7→a] = [[N]]v · a, for all a.

◦

Soundness

Proposition

Every lambda-model is a �lambda-algebra�:

M =β N implies [[M]]v = [[N]]v

Proof: Induction wrt M =β N. Non-immediate cases are two:

(Beta)

[[(λx .P)Q]]v = [[λx .P]]v · [[Q]]v = [[P]]v [x 7→[[Q]]v] = [[P[x := Q]]]v .

(Xi)

Let P =β Q and let M = λx .P , N = λx .Q. Then

[[M]]v · a = [[P]]v [x 7→a] = [[Q]]v [x 7→a] = [[N]]v · a, for all a.

◦

Completeness

Theorem

The following are equivalent:

1) M =β N;

2) A |= M = N, for every lambda-model A.

Proof.

(1)⇒(2) By soundness.

(2)⇒(1) Because term model is a lambda-model.

◦

Complete partial orders

Let 〈A,≤〉 be a partial order.

A subset B ⊆ A is directed when for every a, b ∈ B there is
c ∈ B with a, b ≤ c .

The set A is a complete partial order (cpo) when every
directed subset has a supremum.

It follows that every cpo has a least element ⊥ = sup∅.

◦

Complete partial orders

Let 〈A,≤〉 be a partial order.

A subset B ⊆ A is directed when for every a, b ∈ B there is
c ∈ B with a, b ≤ c .

The set A is a complete partial order (cpo) when every
directed subset has a supremum.

It follows that every cpo has a least element ⊥ = sup∅.

◦

Complete partial orders

Let 〈A,≤〉 be a partial order.

A subset B ⊆ A is directed when for every a, b ∈ B there is
c ∈ B with a, b ≤ c .

The set A is a complete partial order (cpo) when every
directed subset has a supremum.

It follows that every cpo has a least element ⊥ = sup∅.

◦

Complete partial orders

Let 〈A,≤〉 and 〈B ,≤〉 be cpos, and f : A→ B .

Then f is monotone if a ≤ a′ implies f (a) ≤ f (a′).

And f is continuous if sup f (C) = f (supC)
for every nonempty directed C ⊆ A.

Fact: Every continuous function is monotone.

[A→ B] is the set of all continuous functions from A to B

◦

Complete partial orders

Let 〈A,≤〉 and 〈B ,≤〉 be cpos, and f : A→ B .

Then f is monotone if a ≤ a′ implies f (a) ≤ f (a′).

And f is continuous if sup f (C) = f (supC)
for every nonempty directed C ⊆ A.

Fact: Every continuous function is monotone.

[A→ B] is the set of all continuous functions from A to B

◦

Complete partial orders

Let 〈A,≤〉 and 〈B ,≤〉 be cpos, and f : A→ B .

Then f is monotone if a ≤ a′ implies f (a) ≤ f (a′).

And f is continuous if sup f (C) = f (supC)
for every nonempty directed C ⊆ A.

Fact: Every continuous function is monotone.

[A→ B] is the set of all continuous functions from A to B

◦

Complete partial orders

Let 〈A,≤〉 and 〈B ,≤〉 be cpos, and f : A→ B .

Then f is monotone if a ≤ a′ implies f (a) ≤ f (a′).

And f is continuous if sup f (C) = f (supC)
for every nonempty directed C ⊆ A.

Fact: Every continuous function is monotone.

[A→ B] is the set of all continuous functions from A to B

◦

Complete partial orders

If 〈A,≤〉 and 〈B ,≤〉 are cpos then:

I The product A× B is a cpo with
〈a, b〉 ≤ 〈a′, b′〉 i� a ≤ a′ and b ≤ b′.

I The function space [A→ B] is a cpo with
f ≤ g i� ∀a. f (a) ≤ g(a).

◦

Continuous functions
Lemma

A function f : A× B → C is continuous i� it is continuous
wrt both arguments, i.e. all functions of the form λλa. f (a, b)
and λλb. f (a, b) are continuous.

Proof.

(⇐) Take X ⊆ A× B directed. Let Xi = πi(X) for i = 1, 2.

Step 1: If 〈a, b〉 ∈ X1 × X2 then 〈a, b〉 ≤ 〈a′, b′〉 ∈ X .

Step 2: Therefore supX = 〈supX1, supX2〉 = 〈a0, b0〉.
We show that 〈f (a0), f (b0)〉 is the supremum of f (X).
Let c ≥ f (X), then c ≥ f 〈a, b〉 for all 〈a, b〉 ∈ X1 × X2.
Fix a, to get c ≥ supb f (a, b) = f (a, b0).
Fix b0, to get c ≥ supa f (a, b0) = f (a0, b0).

◦

Continuous functions
Lemma

A function f : A× B → C is continuous i� it is continuous
wrt both arguments, i.e. all functions of the form λλa. f (a, b)
and λλb. f (a, b) are continuous.

Proof.

(⇐) Take X ⊆ A× B directed. Let Xi = πi(X) for i = 1, 2.

Step 1: If 〈a, b〉 ∈ X1 × X2 then 〈a, b〉 ≤ 〈a′, b′〉 ∈ X .

Step 2: Therefore supX = 〈supX1, supX2〉 = 〈a0, b0〉.
We show that 〈f (a0), f (b0)〉 is the supremum of f (X).
Let c ≥ f (X), then c ≥ f 〈a, b〉 for all 〈a, b〉 ∈ X1 × X2.
Fix a, to get c ≥ supb f (a, b) = f (a, b0).
Fix b0, to get c ≥ supa f (a, b0) = f (a0, b0).

◦

Continuous functions
Lemma

A function f : A× B → C is continuous i� it is continuous
wrt both arguments, i.e. all functions of the form λλa. f (a, b)
and λλb. f (a, b) are continuous.

Proof.

(⇐) Take X ⊆ A× B directed. Let Xi = πi(X) for i = 1, 2.

Step 1: If 〈a, b〉 ∈ X1 × X2 then 〈a, b〉 ≤ 〈a′, b′〉 ∈ X .

Step 2: Therefore supX = 〈supX1, supX2〉 = 〈a0, b0〉.
We show that 〈f (a0), f (b0)〉 is the supremum of f (X).
Let c ≥ f (X), then c ≥ f 〈a, b〉 for all 〈a, b〉 ∈ X1 × X2.
Fix a, to get c ≥ supb f (a, b) = f (a, b0).
Fix b0, to get c ≥ supa f (a, b0) = f (a0, b0).

◦

Continuous functions
Lemma

A function f : A× B → C is continuous i� it is continuous
wrt both arguments, i.e. all functions of the form λλa. f (a, b)
and λλb. f (a, b) are continuous.

Proof.

(⇐) Take X ⊆ A× B directed. Let Xi = πi(X) for i = 1, 2.

Step 1: If 〈a, b〉 ∈ X1 × X2 then 〈a, b〉 ≤ 〈a′, b′〉 ∈ X .

Step 2: Therefore supX = 〈supX1, supX2〉 = 〈a0, b0〉.
We show that 〈f (a0), f (b0)〉 is the supremum of f (X).

Let c ≥ f (X), then c ≥ f 〈a, b〉 for all 〈a, b〉 ∈ X1 × X2.
Fix a, to get c ≥ supb f (a, b) = f (a, b0).
Fix b0, to get c ≥ supa f (a, b0) = f (a0, b0).

◦

Continuous functions
Lemma

A function f : A× B → C is continuous i� it is continuous
wrt both arguments, i.e. all functions of the form λλa. f (a, b)
and λλb. f (a, b) are continuous.

Proof.

(⇐) Take X ⊆ A× B directed. Let Xi = πi(X) for i = 1, 2.

Step 1: If 〈a, b〉 ∈ X1 × X2 then 〈a, b〉 ≤ 〈a′, b′〉 ∈ X .

Step 2: Therefore supX = 〈supX1, supX2〉 = 〈a0, b0〉.
We show that 〈f (a0), f (b0)〉 is the supremum of f (X).
Let c ≥ f (X), then c ≥ f 〈a, b〉 for all 〈a, b〉 ∈ X1 × X2.

Fix a, to get c ≥ supb f (a, b) = f (a, b0).
Fix b0, to get c ≥ supa f (a, b0) = f (a0, b0).

◦

Continuous functions
Lemma

A function f : A× B → C is continuous i� it is continuous
wrt both arguments, i.e. all functions of the form λλa. f (a, b)
and λλb. f (a, b) are continuous.

Proof.

(⇐) Take X ⊆ A× B directed. Let Xi = πi(X) for i = 1, 2.

Step 1: If 〈a, b〉 ∈ X1 × X2 then 〈a, b〉 ≤ 〈a′, b′〉 ∈ X .

Step 2: Therefore supX = 〈supX1, supX2〉 = 〈a0, b0〉.
We show that 〈f (a0), f (b0)〉 is the supremum of f (X).
Let c ≥ f (X), then c ≥ f 〈a, b〉 for all 〈a, b〉 ∈ X1 × X2.
Fix a, to get c ≥ supb f (a, b) = f (a, b0).

Fix b0, to get c ≥ supa f (a, b0) = f (a0, b0).

◦

Continuous functions
Lemma

A function f : A× B → C is continuous i� it is continuous
wrt both arguments, i.e. all functions of the form λλa. f (a, b)
and λλb. f (a, b) are continuous.

Proof.

(⇐) Take X ⊆ A× B directed. Let Xi = πi(X) for i = 1, 2.

Step 1: If 〈a, b〉 ∈ X1 × X2 then 〈a, b〉 ≤ 〈a′, b′〉 ∈ X .

Step 2: Therefore supX = 〈supX1, supX2〉 = 〈a0, b0〉.
We show that 〈f (a0), f (b0)〉 is the supremum of f (X).
Let c ≥ f (X), then c ≥ f 〈a, b〉 for all 〈a, b〉 ∈ X1 × X2.
Fix a, to get c ≥ supb f (a, b) = f (a, b0).
Fix b0, to get c ≥ supa f (a, b0) = f (a0, b0).

◦

Continuous functions

Lemma

The application App : [A→ B]× A→ B is continuous.

Proof: Uses the previous lemma.

Lemma

The abstraction Abs : [(A× B)→ C]→ [A→ [B → C]],
given by Abs(F)(a)(b) = F (a, b), is continuous.

◦

Re�exive cpo

The cpo D is re�exive i� there are continuous functions
F : D → [D → D] and G : [D → D]→ D,

with F ◦ G = id[D→D].

Then F must be onto and G is injective.

The following are equivalent conditions:

�G ◦ F = idD�, �G onto�, �F injective�.

◦

Re�exive cpo

The cpo D is re�exive i� there are continuous functions
F : D → [D → D] and G : [D → D]→ D,

with F ◦ G = id[D→D].

Then F must be onto and G is injective.

The following are equivalent conditions:

�G ◦ F = idD�, �G onto�, �F injective�.

◦

Re�exive cpo

The cpo D is re�exive i� there are continuous functions
F : D → [D → D] and G : [D → D]→ D,

with F ◦ G = id[D→D].

Then F must be onto and G is injective.

The following are equivalent conditions:

�G ◦ F = idD�, �G onto�, �F injective�.

◦

Re�exive cpo

F : D → [D → D], G : [D → D]→ D, F ◦ G = id.

De�ne application as a · b = F (a)(b) so that G (f) · a = f (a).

De�ne interpretation as

I [[x]]v = v(x);

I [[PQ]]v = [[P]]v · [[Q]]v ;

I [[λx .P]]v = G (λλa.[[P]]v [x 7→a]).

Fact: This is a (well-de�ned) lambda interpretation.
(Use continuity of App and Abs.)

◦

Re�exive cpo

F : D → [D → D], G : [D → D]→ D, F ◦ G = id.

De�ne application as a · b = F (a)(b) so that G (f) · a = f (a).

De�ne interpretation as

I [[x]]v = v(x);

I [[PQ]]v = [[P]]v · [[Q]]v ;

I [[λx .P]]v = G (λλa.[[P]]v [x 7→a]).

Fact: This is a (well-de�ned) lambda interpretation.
(Use continuity of App and Abs.)

◦

Re�exive cpo

F : D → [D → D], G : [D → D]→ D, F ◦ G = id.

De�ne application as a · b = F (a)(b) so that G (f) · a = f (a).

De�ne interpretation as

I [[x]]v = v(x);

I [[PQ]]v = [[P]]v · [[Q]]v ;

I [[λx .P]]v = G (λλa.[[P]]v [x 7→a]).

Fact: This is a (well-de�ned) lambda interpretation.
(Use continuity of App and Abs.)

◦

Re�exive cpo

F : D → [D → D], G : [D → D]→ D, F ◦ G = id.

De�ne application as a · b = F (a)(b) so that G (f) · a = f (a).

De�ne interpretation as

I [[x]]v = v(x);

I [[PQ]]v = [[P]]v · [[Q]]v ;

I [[λx .P]]v = G (λλa.[[P]]v [x 7→a]).

Fact: This is a (well-de�ned) lambda interpretation.
(Use continuity of App and Abs.)

◦

Re�exive cpo

Theorem

A re�exive cpo is a lambda-model.

Proof.

Prove weak extensionality: let [[λx .M]]v · a = [[λx .N]]v · a, all a.
Note that [[λx .M]]v · a = G (λλa.[[M]]v [x 7→a]) · a = [[M]]v [x 7→a],
and thus λλa.[[M]]v [x 7→a] = λλa.[[N]]v [x 7→a]. By the injectivity
of G , it follows that [[λx .M]]v = [[λx .N]]v .

◦

Re�exive cpo

Theorem

A re�exive cpo is a lambda-model.

Proof.

Prove weak extensionality: let [[λx .M]]v · a = [[λx .N]]v · a, all a.
Note that [[λx .M]]v · a = G (λλa.[[M]]v [x 7→a]) · a = [[M]]v [x 7→a],
and thus λλa.[[M]]v [x 7→a] = λλa.[[N]]v [x 7→a]. By the injectivity
of G , it follows that [[λx .M]]v = [[λx .N]]v .

◦

