Typy proste

15 kwietnia 2013

Simple types

Types:

- ► Type constant **0** is a type.
- ▶ If σ and τ are types then $(\sigma \to \tau)$ is a type.

Alternatywne podejście: inne stałe lub zmienne typowe.

Konwencja:

▶ Zamiast $(\tau \to (\sigma \to \rho))$ piszemy $\tau \to \sigma \to \rho$.

Każdy typ ma postać $\tau_1 \rightarrow \cdots \rightarrow \tau_n \rightarrow atom$.

Church style syntax (orthodox)

Assume infinite sets V_{τ} of variables of each type τ . Define sets T_{τ} of terms of type τ :

- ▶ A variable of type τ is a term of type τ ;
- ▶ If $M \in T_{\sigma \to \tau}$ and $N \in T_{\sigma}$ then $(MN) \in T_{\tau}$;
- ▶ If $M \in T_{\tau}$ and $x \in V_{\sigma}$ then $(\lambda x M) \in T_{\sigma \to \tau}$.

Write M^{σ} for $M \in T_{\sigma}$ and define beta-reduction by $(\lambda x^{\sigma}. M^{\tau}) N^{\sigma} \Rightarrow M[x^{\sigma} := N].$

Church and Curry

Church style:

- ► New syntax, built-in types.
- Every term has exactly one type.
- ► No "untypable" terms.

Curry style:

- Ordinary untyped lambda-terms.
- ► Types are derivable properties of terms.
- System of type assignment rules.
- A term may have many types or none.
- Typability not obvious.

Non-orthodox Church

Type-assignment with type annotations on bound variables.

$$\frac{\Gamma(x:\sigma) \vdash x:\sigma \text{ (Var)}}{\Gamma(x:\sigma) \vdash M:\tau} \frac{\Gamma(x:\sigma) \vdash M:\tau}{\Gamma \vdash \lambda x:\sigma M:\sigma \to \tau} \text{ (Abs)}$$

$$\frac{\Gamma \vdash M:\sigma \to \tau \quad \Gamma \vdash N:\sigma}{\Gamma \vdash M:\sigma} \text{ (App)}$$

Fact: If
$$\Gamma \vdash M : \tau$$
 and $\Gamma \vdash M : \sigma$ then $\tau = \sigma$.

Relating systems

Orthodox Church terms are like

- ▶ Non-orthodox terms in a fixed infinite environment.
- ► Curry-style type derivations.

Konwencja: Typy jako górne indeksy, np.

$$(\lambda x^{\sigma} M^{\tau}) N^{\sigma} : \tau$$

Properties

Subject reduction property:

Beta-eta reduction preserves types.

Strong normalization:

Every typed term is strongly normalizing.

Definable functions

Liczebniki Churcha $\mathbf{n}=\lambda fx$. $f^n(x)$ mają każdy typ postaci $\omega_\sigma=(\sigma\to\sigma)\to(\sigma\to\sigma)$.

A function $f: \mathbb{N}^k \to \mathbb{N}$ is β -definable in type ω_{σ} if there is a closed term F such that

- $\blacktriangleright F: \omega_{\sigma} \to \cdots \to \omega_{\sigma} \to \omega_{\sigma};$
- ▶ If $f(n_1, ..., n_k) = m$ then $F \mathbf{n}_1 ... \mathbf{n}_k =_{\beta} \mathbf{m}$.

Examples

► Addition: $\lambda n^{\omega_{\sigma}} \lambda m^{\omega_{\sigma}} \lambda f^{\sigma \to \sigma} \lambda x^{\sigma}$. nf(mfx);

Examples

- ► Addition: $\lambda n^{\omega_{\sigma}} \lambda m^{\omega_{\sigma}} \lambda f^{\sigma \to \sigma} \lambda x^{\sigma}$. nf(mfx);
- ▶ Multiplication: $\lambda n^{\omega_{\sigma}} \lambda m^{\omega_{\sigma}} \lambda f^{\sigma \to \sigma} \lambda x^{\sigma}$. n(mf)x;

Examples

- ► Addition: $\lambda n^{\omega_{\sigma}} \lambda m^{\omega_{\sigma}} \lambda f^{\sigma \to \sigma} \lambda x^{\sigma}$. nf(mfx);
- ► Multiplication: $\lambda n^{\omega_{\sigma}} \lambda m^{\omega_{\sigma}} \lambda f^{\sigma \to \sigma} \lambda x^{\sigma} . n(mf) x$;
- ► Test for zero (if n=0 then m else k): $\lambda n^{\omega_{\sigma}} \lambda m^{\omega_{\sigma}} \lambda k^{\omega_{\sigma}} \lambda f^{\sigma \to \sigma} \lambda x^{\sigma}. n(\lambda y^{\sigma}.kfx)(mfx).$

Extended polynomials (wielomiany warunkowe)

The least class of functions containing:

- Addition;
- Multiplication;
- Test for zero;
- Constants zero and one;
- Projections,

and closed under compositions.

```
Example: f(x,y) = \text{if } x = 0 \text{ then if } y = 0 \text{ then } p_1(x,y) else p_2(x,y) else if y = 0 then p_3(x,y) else p_4(x,y).
```

Definable functions

Theorem (H. Schwichtenberg'76):

For every σ the functions beta-definable in type ω_{σ} are exactly the extended polynomials.

More definable functions

A function f is non-uniformly definable if there is a closed term F such that

- $\blacktriangleright F: \omega_{\sigma_1} \to \cdots \to \omega_{\sigma_k} \to \omega_{\sigma};$
- ▶ If $f(n_1, ..., n_k) = m$ then $F \mathbf{n}_1 ... \mathbf{n}_k =_{\beta} \mathbf{m}$.

More definable functions

A function f is non-uniformly definable if there is a closed term F such that

- \blacktriangleright \vdash $F: \omega_{\sigma_1} \rightarrow \cdots \rightarrow \omega_{\sigma_k} \rightarrow \omega_{\sigma};$
- ▶ If $f(n_1, ..., n_k) = m$ then $F \mathbf{n}_1 ... \mathbf{n}_k =_{\beta} \mathbf{m}$.

Examples:

► The predecessor function p(n) = n - 1 and the exponentiation function $exp(m, n) = m^n$ are non-uniformly definable. (Easy)

More definable functions

A function f is non-uniformly definable if there is a closed term F such that

- $\blacktriangleright F: \omega_{\sigma_1} \to \cdots \to \omega_{\sigma_k} \to \omega_{\sigma};$
- ▶ If $f(n_1, ..., n_k) = m$ then $F \mathbf{n}_1 ... \mathbf{n}_k =_{\beta} \mathbf{m}$.

Examples:

- ► The predecessor function p(n) = n 1 and the exponentiation function $exp(m, n) = m^n$ are non-uniformly definable. (Easy)
- ▶ The subtraction minus(m, n) = m n and equality test Eq(m, n) = if m = n then 0 else 1 are not definable non-uniformly. (Hard)

Equality

Theorem (R. Statman'79): The equality problem

Are two well-typed terms beta-equal?

is non-elementary. That is, for no fixed k it is solvable in time

$$\left\{ \frac{2^{2^{-2^{-2^{-1}}}}}{2}\right\} k$$

Equality

Theorem (R. Statman'79): The equality problem

Are two well-typed terms beta-equal?

is non-elementary. That is, for no fixed k it is solvable in time

$$2^{2^{n}}$$

Exercise: How long is the normal form of $2 \cdots 2xy$?

The inhabitation problem

Inhabitation problem:

Given Γ, τ , is there M such that $\Gamma \vdash M : \tau$?

The inhabitation problem

Inhabitation problem:

Given Γ, τ , is there M such that $\Gamma \vdash M : \tau$?

Fact (R. Statman):

Inhabitation in simple types is decidable and Pspace-complete.

- Natural numbers are generated by
 - Constant 0 : int;
 - Successor $s : int \rightarrow int$.

- Natural numbers are generated by
 - Constant 0 : int;
 - ▶ Successor $s : int \rightarrow int$.

They correspond to long normal forms of type

$$\omega = (\mathbf{0} \to \mathbf{0}) \to \mathbf{0} \to \mathbf{0}$$

- Natural numbers are generated by
 - Constant 0 : int;
 - Successor $s : int \rightarrow int$.

They correspond to long normal forms of type

$$\omega = (\mathbf{0} \rightarrow \mathbf{0}) \rightarrow \mathbf{0} \rightarrow \mathbf{0}$$

- ▶ Words over $\{a, b\}$ are generated by
 - Constant ε : word;
 - ► Two successors $\lambda w(a \cdot w)$ and $\lambda w(b \cdot w)$ of type **word** \rightarrow **word**.

- Natural numbers are generated by
 - Constant 0 : int;
 - ▶ Successor $s : int \rightarrow int$.

They correspond to long normal forms of type $\omega = (\mathbf{0} \to \mathbf{0}) \to \mathbf{0} \to \mathbf{0}$

- ▶ Words over $\{a, b\}$ are generated by
 - Constant ε : word;
 - Two successors $\lambda w(a \cdot w)$ and $\lambda w(b \cdot w)$ of type **word** \rightarrow **word**.

They correspond to long normal forms of type word $= (0 \rightarrow 0) \rightarrow (0 \rightarrow 0) \rightarrow 0 \rightarrow 0$

- ► Binary trees are generated by
 - Constant nil : tree;
 - ▶ Constructor cons: tree \rightarrow tree \rightarrow tree.

- ► Binary trees are generated by
 - Constant nil : tree;
 - ▶ Constructor *cons* : $tree \rightarrow tree \rightarrow tree$.

They correspond to long normal forms of type

$$\text{tree} = \left(0 \rightarrow 0 \rightarrow 0\right) \rightarrow 0 \rightarrow 0$$

- ► Binary trees are generated by
 - Constant nil : tree;
 - ▶ Constructor *cons* : tree \rightarrow tree \rightarrow tree.

They correspond to long normal forms of type

$$\mathsf{tree} = \big(0 \to 0 \to 0\big) \to 0 \to 0$$

Generalization:

Free algebras correspond to types of order two, i.e, of the form

$$ig(0^{n_1}
ightarrow 0ig)
ightarrow \cdots
ightarrow ig(0^{n_k}
ightarrow 0ig)
ightarrow 0$$

Type reducibility

Definition: Type τ is *reducible* to type σ iff there exists a closed term $\Phi: \tau \to \sigma$ such that the operator $M:\tau$. ΦM is injective on closed terms, i.e., $\Phi M_1 =_{\beta\eta} \Phi M_2 \quad \text{implies} \quad M_1 =_{\beta\eta} M_2$ for closed $M_1, M_2: \tau$.

Type reducibility

Definition: Type τ is *reducible* to type σ iff there exists a closed term $\Phi: \tau \to \sigma$ such that the operator $\lambda M:\tau$. ΦM is injective on closed terms, i.e.,

$$\Phi M_1 =_{\beta\eta} \Phi M_2$$
 implies $M_1 =_{\beta\eta} M_2$ for closed $M_1, M_2 : \tau$.

Theorem (R. Statman):

Every type over a single type constant **0** is reducible to **tree**.

Semantics for finite types

Assumptions:

- Orthodox Church style;
- ► Only one atomic type **0**;
- Extensional equality $=_{\beta\eta}$

Standard model $\mathfrak{M}(A)$

- ▶ Basic domain $D_0 = A$;
- ▶ Function domains: $D_{\sigma \to \tau} = D_{\sigma} \to D_{\tau}$;
- Obvious semantics:
 - $[x]_v = v(x)$;
 - $[MN]_{v} = [M]_{v}([N]_{v});$

Completeness

Theorem (Harvey Friedman):

Terms are $\beta\eta$ -equal iff they are equal in $\mathfrak{M}(\mathbb{N})$.

Completeness

Theorem (Harvey Friedman):

Terms are $\beta\eta$ -equal iff they are equal in $\mathfrak{M}(\mathbb{N})$.

Proof:

Define partial surjections $\varphi_{\sigma}: D_{\sigma} \longrightarrow T_{\sigma}/_{=\beta_{\eta}}$ by induction:

For $\sigma=\mathbf{0}$ take $\varphi_{\mathbf{0}}:\mathbb{N}\to\mathcal{T}_{\mathbf{0}}/_{=\beta\eta}$ to be any (total) surjection. (Terms of base type are represented by their numbers.)

For function types, we represent (the behaviour of) lambda-terms using integer functions, so that:

$$\varphi_{\sigma}(ab) = \varphi_{\tau \to \sigma}(a)\varphi_{\tau}(b).$$

Completeness proof

Given $\varphi_{\sigma}: D_{\sigma} \longrightarrow T_{\sigma}/_{=\beta\eta}$ and $\varphi_{\tau}: D_{\tau} \longrightarrow T_{\tau}/_{=\beta\eta}$, we say that a function $f: D_{\tau} \longrightarrow D_{\sigma}$ represents a term $M^{\tau \to \sigma}$ when (informally) the following diagram commutes:

For any M, there exists such an f (not unique). For a given f, such an M (if exists) is unique up to $\beta\eta$.

Completeness proof

Define partial surjections $\varphi_{\sigma}: D_{\sigma} \longrightarrow T_{\sigma}/_{=\beta_{\eta}}$ by induction:

- $ightharpoonup arphi_0: \mathbb{N} o \mathcal{T}_0/_{=_{\beta\eta}}$ is any (total) surjection.
- $\varphi_{\tau \to \sigma}(f) = [M]_{=_{\beta_{\eta}}}$ when f represents M.

Abbreviation: If $d \in D_{\sigma}$, write \overline{d} for $\varphi_{\sigma}(d)$.

Main property:

If \overline{f} and \overline{e} are defined then $\overline{f(e)}$ is defined and \overline{f} $\overline{e} =_{\beta\eta} \overline{f(e)}$

"Partial epimorphism": $\overline{f} \ \overline{e} =_{\beta\eta} \overline{f(e)}$

0

Completeness proof

Lemma:

Take v so that $\overline{v(x)} = x$, for all x. Then $M =_{\beta \eta} \overline{\llbracket M \rrbracket_v}$, all M.

Completeness proof

Lemma:

Take v so that $\overline{v(x)} = x$, for all x. Then $M =_{\beta\eta} \overline{\llbracket M \rrbracket_v}$, all M.

Main Proof: Let $\mathfrak{M}(\mathbb{N}) \models M = N$. Then $\llbracket M \rrbracket_{\nu} = \llbracket N \rrbracket_{\nu}$, for all ν , in particular for ν as above. Therefore

$$M =_{\beta\eta} \overline{\llbracket M \rrbracket_{\mathsf{v}}} =_{\beta\eta} \overline{\llbracket N \rrbracket_{\mathsf{v}}} =_{\beta\eta} N.$$

Finite completeness

Theorem (R. Statman):

For every M there is k such that, for all N:

$$M =_{\beta\eta} N$$
 iff $\mathfrak{M}(k) \models M = N$.

Corollary:

Terms are $\beta\eta$ -equal iff they are equal in all finite models.

Finite completeness proof

It suffices to prove that

for every closed M: tree there is k such that, for all N: tree:

$$M =_{\beta\eta} N$$
 iff $\mathfrak{M}(k) \models M = N$.

Indeed, for closed $M: \tau$, consider $\Phi(M)$, where Φ is a reduction of τ to tree.

For non-closed terms, consider appropriate lambda-closures.

Let $p(m)(n) = 2^m(2n+1)$. Then $p \in D_{0\to 0\to 0}$ in $\mathfrak{M}(\mathbb{N})$.

Observe that p(m)(n) > m, n, for all m, n.

Let $p(m)(n) = 2^m(2n+1)$. Then $p \in D_{0\to 0\to 0}$ in $\mathfrak{M}(\mathbb{N})$. Observe that p(m)(n) > m, n, for all m, n.

Term zamknięty typu tree, to w istocie drzewo.

Let $p(m)(n) = 2^m(2n+1)$. Then $p \in D_{0\to 0\to 0}$ in $\mathfrak{M}(\mathbb{N})$. Observe that p(m)(n) > m, n, for all m, n.

Term zamknięty typu tree, to w istocie drzewo.

Wartość $[\![M]\!](p)(0)$ można uważać za numer tego drzewa.

Ćwiczenie: Jaka liczba jest numerem drzewa $\lambda px. px(p(pxx)x)$?

For M : tree, define k = 2 + [M](p)(0), i.e. 2 + numer(M).

For M: tree, define k = 2 + [M](p)(0), i.e. 2 + numer(M).

Let $p': k \to k \to k$ be p "truncated" to values less than k. Then $p' \in D_{0 \to 0 \to 0}$ in $\mathfrak{M}(k)$. For M: tree, define $k = 2 + \lceil M \rceil (p)(0)$, i.e. 2 + numer(M).

Let $p': k \to k \to k$ be p "truncated" to values less than k. Then $p' \in D_{0 \to 0 \to 0}$ in $\mathfrak{M}(k)$.

Suppose
$$\mathfrak{M}(k) \models M = N$$
. Then in the model $\mathfrak{M}(k)$:

$$k - 2 = \llbracket M \rrbracket(p')(0) = \llbracket N \rrbracket(p')(0) \tag{*}$$

For M: tree, define $k = 2 + \lceil M \rceil (p)(0)$, i.e. 2 + numer(M).

Let $p': k \to k \to k$ be p "truncated" to values less than k. Then $p' \in D_{0 \to 0 \to 0}$ in $\mathfrak{M}(k)$.

Suppose $\mathfrak{M}(k) \models M = N$. Then in the model $\mathfrak{M}(k)$:

$$k-2 = [M](p')(0) = [N](p')(0)$$
 (*)

But all numbers needed to verify (*) are at most k-2. (Otherwise the rhs equals k-1.)

For M: **tree**, define k = 2 + [M](p)(0), i.e. 2 + numer(M).

Let $p': k \to k \to k$ be p "truncated" to values less than k. Then $p' \in D_{0 \to 0 \to 0}$ in $\mathfrak{M}(k)$.

Suppose
$$\mathfrak{M}(k) \models M = N$$
. Then in the model $\mathfrak{M}(k)$:

$$k - 2 = \llbracket M \rrbracket (p')(0) = \llbracket N \rrbracket (p')(0) \tag{*}$$

But all numbers needed to verify (*) are at most k-2. (Otherwise the rhs equals k-1.)

Therefore $\llbracket M \rrbracket(p)(0) = \llbracket N \rrbracket(p)(0)$ holds also in $\mathfrak{M}(\mathbb{N})$. It follows that $M =_{\beta \eta} N$.

There is no $E: \omega_{\tau} \to \omega_{\sigma} \to \omega_{\rho}$, such that for all $p, q \in \mathbb{N}$:

$$E \mathbf{p}^{\omega_{\tau}} \mathbf{q}^{\omega_{\sigma}} =_{\beta\eta} \mathbf{0}^{\omega_{\rho}} \quad \text{iff} \quad p = q.$$

There is no $E: \omega_{\tau} \to \omega_{\sigma} \to \omega_{\rho}$, such that for all $p, q \in \mathbb{N}$:

$$E \mathbf{p}^{\omega_{\tau}} \mathbf{q}^{\omega_{\sigma}} =_{\beta\eta} \mathbf{0}^{\omega_{\rho}}$$
 iff $p = q$.

Proof: By Statman's thm., take k such that for all $N:\omega_{\rho}$:

$$\mathfrak{M}(k) \models \mathbf{0}^{\omega_{\rho}} = N$$
 iff $\mathbf{0}^{\omega_{\rho}} =_{\beta\eta} N$.

There is no $E: \omega_{\tau} \to \omega_{\sigma} \to \omega_{\rho}$, such that for all $p, q \in \mathbb{N}$:

$$E \mathbf{p}^{\omega_{\tau}} \mathbf{q}^{\omega_{\sigma}} =_{\beta\eta} \mathbf{0}^{\omega_{\rho}}$$
 iff $\rho = q$.

Proof: By Statman's thm., take k such that for all $N: \omega_{\rho}$:

$$\mathfrak{M}(k) \models \mathbf{0}^{\omega_{\rho}} = N$$
 iff $\mathbf{0}^{\omega_{\rho}} =_{\beta\eta} N$.

There are $p \neq q$ with $\llbracket \mathbf{p}^{\omega_{\tau}} \rrbracket = \llbracket \mathbf{q}^{\omega_{\tau}} \rrbracket$ in $\mathfrak{M}(k)$.

There is no
$$E: \omega_{\tau} \to \omega_{\sigma} \to \omega_{\rho}$$
, such that for all $p, q \in \mathbb{N}$:

$$E \mathbf{p}^{\omega_{\tau}} \mathbf{q}^{\omega_{\sigma}} =_{\beta\eta} \mathbf{0}^{\omega_{\rho}}$$
 iff $p = q$.

Proof: By Statman's thm., take
$$k$$
 such that for all $N:\omega_{\rho}$:
$$\mathfrak{M}(k)\models \mathbf{0}^{\omega_{\rho}}=N \qquad \text{iff} \qquad \mathbf{0}^{\omega_{\rho}}=_{\beta\eta}N.$$
 There are $p\neq q$ with $\llbracket \mathbf{p}^{\omega_{\tau}}\rrbracket=\llbracket \mathbf{q}^{\omega_{\tau}}\rrbracket$ in $\mathfrak{M}(k)$. So in $\mathfrak{M}(k)$:
$$\llbracket E\mathbf{p}^{\omega_{\tau}}\mathbf{q}^{\omega_{\sigma}}\rrbracket=\llbracket E\rrbracket\llbracket \mathbf{p}^{\omega_{\tau}}\rrbracket\llbracket \mathbf{q}^{\omega_{\sigma}}\rrbracket=\llbracket E\rrbracket\llbracket \mathbf{q}^{\omega_{\tau}}\rrbracket\llbracket \mathbf{q}^{\omega_{\sigma}}\rrbracket=\llbracket E\mathbf{q}^{\omega_{\tau}}\mathbf{q}^{\omega_{\sigma}}\rrbracket=\llbracket E\mathbf{q}^{\omega_{\tau}}\mathbf{q}^{\omega_{\sigma}}\end{bmatrix}=\llbracket E\mathbf{q}^{\omega_{\tau}}\mathbf{q}^{\omega_{\sigma}}$$

Plotkin's problem

Given $d \in D_{\tau}$ in a finite model $\mathfrak{M}(X)$. Is there a term $M : \tau$ with $\llbracket M \rrbracket = d$?

More generally:

Let
$$v(x_1)=e_1\in D_{\sigma_1},\ldots,v(x_n)=e_n\in D_{\sigma_n}.$$
 Is there M such that $[\![M]\!]_v=d?$ (Is d definable from $e_1,\ldots,e_n?$)

Fact: These decision problems are reducible to each other.

Theorem (Ralph Loader, 1993):

Plotkin's problem is undecidable.

Theorem (Ralph Loader, 1993):

Plotkin's problem is undecidable.

Proof: Reduction from the undecidable word problem for Semi-Thue systems.

Theorem (Ralph Loader, 1993):

Plotkin's problem is undecidable.

Proof: Reduction from the undecidable word problem for Semi-Thue systems.

Semi-Thue system: a finite set of rules $C \Rightarrow D$, where $C, D \subseteq \{a, b\}^*$. Induces rewriting $xCy \rightarrow xDy$, for any x, y. Word problem: Can a word w be rewritten to v in a finite number of steps?

Theorem (Ralph Loader, 1993):

Plotkin's problem is undecidable.

Proof: Reduction from the undecidable word problem for Semi-Thue systems.

Kodujemy słowa w i v i reguły systemu jako elementy modelu Pytamy, czy v jest definiowalne z w i reguł.

Proof

Take $X = \{a, b, L, R, *, 1, 0\}$. Encode any word $w = o_1 \dots o_n$ as a function $\overline{w} : D_0^n \to D_0$, such that

- $\overline{w}(*\cdots*o_i*\cdots*)=1$, if the *i*-th symbol in w is o_i ;
- $\overline{w}(*\cdots*LR*\cdots*)=1;$
- $ightharpoonup \overline{w}(\ldots) = 0$, otherwise.

How does it work?

For $w = w_1 C w_2$ we have $\overline{w} = \lambda \vec{x} \lambda \vec{y} \lambda \vec{z} . \overline{w}(\vec{x})(\vec{y})(\vec{z})$.

How does it work?

For $w = w_1 C w_2$ we have $\overline{w} = \lambda k \vec{x} \lambda k \vec{y} \lambda k \vec{z} \cdot \overline{w}(\vec{x})(\vec{y})(\vec{z})$.

Fix \vec{x} , \vec{z} and consider the function $g = \lambda \vec{y}$. $\overline{w}(\vec{x})(\vec{y})(\vec{z})$. It "accepts" the following strings (depending on \vec{x} , \vec{z}):

\vec{x}	\vec{y}	\vec{z}
* · · · * O; * · · · *	* · · · · · *	* · · · · · *
* · · · · · *	same as \overline{C}	* · · · · · *
* · · · · · *	* • • • • • • •	* · · · * O; * · · · *
··· <i>LR</i> *···*	* · · · · · *	* · · · · · *
* · · · · · * L	<i>R</i> * · · · · · *	* · · · · · *
* · · · · · *	* · · · · · * L	<i>R</i> * · · · · · *
* · · · · · *	* · · · · · *	*···* <i>LR</i> *···*

How does it work?

Fix \vec{x} , \vec{z} and consider the function $g = \lambda \vec{y}$. $\overline{w}(\vec{x})(\vec{y})(\vec{z})$.

Depending on \vec{x} , \vec{z} , the function g is as follows:

\vec{X}	g	\vec{z}
* · · · * O; * · · · *	χ{*···*}	* · · · · · *
* · · · · · *	\overline{C}	* · · · · · *
* · · · · · *	χ _{*···*}	* · · · * O _i * · · · *
* · · · * LR * · · · *	χ _{*···*}	* · · · · · *
* · · · · · * L	$\chi_{\{R*\cdots *\}}$	* · · · · · *
* · · · · · *	$\chi_{\{*\cdots*L\}}$	<i>R</i> * · · · · · *
* · · · · · *	χ{*···*}	* · · · * LR * · · · *

Otherwise $g = \chi_{\varnothing}$

How to encode a rule $F = (C \Rightarrow D)$?

How to encode a rule $F = (C \Rightarrow D)$?

Fix \vec{x}, \vec{z} and consider the function $g = \lambda \vec{y} \cdot \overline{w}(\vec{x})(\vec{y})(\vec{z})$.

What will change in this table if we replace $w_1 C w_2$ by $w_1 D w_2$?

\vec{x}	g	\vec{z}
$*\cdots * o_i * \cdots *$	$\chi_{\{*\cdots *\}}$	* • • • • • • •
* · · · · · *	\overline{C}	* · · · · · *
* · · · · · *	χ{*···*}	* · · · * O _i * · · · *
* · · · * LR * · · · *	χ{*···*}	* · · · · · *
* · · · · · * L	$\chi_{\{R*\cdots *\}}$	* · · · · · *
* · · · · · *	$\chi_{\{*\cdots*L\}}$	<i>R</i> * · · · · · *
* · · · · · *	χ{*···*}	* · · · * LR * · · · *
otherwise	χø	otherwise

How to encode a rule $F = (C \Rightarrow D)$

Every rule $F = (C \Rightarrow D)$ is encoded as a function $\overline{F}: (D_0^m \to D_0) \to (D_0^n \to D_0)$.

where m = |C| and n = |D|. We take:

- $\blacktriangleright \overline{F}(\chi_{\{*\cdots*\}}) = \chi_{\{*\cdots*\}};$
- $\overline{F}(\chi_{\{R*\cdots*\}}) = \chi_{\{R*\cdots*\}};$
- $\overline{F}(\chi_{\{*\cdots*L\}}) = \chi_{\{*\cdots*L\}};$
- $\blacktriangleright \overline{F}(\overline{C}) = \overline{D};$
- $ightharpoonup \overline{F}(g)=\chi_\varnothing$, for any other g.

Claim

A word w can be rewritten to v iff the element \overline{v} of $\mathfrak{M}(X)$ is definable from \overline{w} and the functions \overline{F} encoding the rules.

Claim

A word w can be rewritten to v iff the element \overline{v} of $\mathfrak{M}(X)$ is definable from \overline{w} and the functions \overline{F} encoding the rules.

The easy part: Let $w = w_1 C w_2$ rewrites to $v = w_1 D w_2$ using $F = (C \Rightarrow D)$. Assume that term W defines \overline{w} . Then \overline{v} is definable by

$$V = \lambda \vec{x} \vec{u} \vec{z}, \ \overline{F}(\lambda \vec{y}. \ W \vec{x} \vec{y} \vec{z}) \vec{u}, \tag{*}$$

It follows that codes of reachable words are definable.

Claim

A word w can be rewritten to v iff the element \overline{v} of $\mathfrak{M}(X)$ is definable from \overline{w} and the functions \overline{F} encoding the rules.

The easy part: Let $w = w_1 C w_2$ rewrites to $v = w_1 D w_2$ using $F = (C \Rightarrow D)$. Assume that term W defines \overline{w} . Then \overline{v} is definable by

$$V = \lambda \vec{x} \vec{u} \vec{z}, \, \overline{F}(\lambda \vec{y}. \, W \vec{x} \vec{y} \vec{z}) \vec{u}, \tag{*}$$

It follows that codes of reachable words are definable.

The hard part: And conversely.