Sita wyrazu: logika zdaniowa

Rachunek lambda - ciag dalszy true = Axy.x false = Axy.y
if P then Q else R = PQR.

It works:
18 marca 2013 if true then Q else R —3 Q
if false then Q else R —3 R.
Ordered pair Church’s numerals
Pair = Boolean selector:
(M,N) = Ax.xMN; cn = n = Ax.f"(x),
TP = AX1X0.X; (i=1,2);
N — (i=1.2) 0 = MMx.x;
P opRm RS 1 = Mk
2 = Mf(K);
It works: 3 = MMx.f(f(fx)), etc.

M (M, N) —35 (M, N)ymy -5 M.
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definable functions

Successor: succ = Anfx.f(nfx);
Addition: add = A\mnfx. mf (nfx);
Multiplication: mult = Amnfx.m(nf)x;
Exponentiation: exp = Amnfx.mnfx;

Test for zero: zero = Am.m(\y false)true;

Undecidability

The
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following are undecidable problems:

Given M and N, does M —3 N hold?
Given M and N, does M =5 N hold?
Given M, does M normalize?

Given M, does M strongly normalize?

Predecessor is definable too

Step = Ap.(succ(pmy), pm1)
pred = An.(nStep(0,0))m,

How it works:

Step(0,0) —3 (1,0)
Step(1,0) —4 (2,1)
Step(2,1) —4 (3,2),

and so on.

The standard theory



Adding equational axioms

Example

Add the axiom K = S to the equational theory
of A-calculus. Then, for every M, one proves:

M = SIKM)I = KI(KM)I = 1.

This extension is inconsistent.

Bohm Theorem

Let M, N be (3-normal combinators with M # s, N
Then MP = true and NP = false, for some P

Bohm Trees: the difference
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M = Axy.x(Az.xzy)y N = Axy.x(Azv.xzxv)y

Trick: Applying M to Auv. (u,v) gives \y. (A\z.(z,y),y).
And components can be extracted from a pair.

Bohm Trees (finite case)

AXy. X AXy. X
Az. x y )7x \ y
z y z X v
M = Axy.x(A\z.xzy)y N = Axy.x(Azv.xzxv)y
[0}
Discriminating terms
M = Axy.x(A\z.xzy)y N = Axy.x(Azv.xzxv)y

Applying M and N to P = A\uv. (u, v), then to any Q yields:
(A\z.(z,Q), Q) (Azv.(z, P)v, Q)

Next appply both to true, |, false to obtain:

Q P = Auv.(u,v)

Choose @ = Auvw. true and apply both sides to false, I, true:

true false.



The Meaning of “Value” and “Undefined” Solvability

First idea: Value = Normal form. A closed term is solvable iff MP =3 |, for some closed P.

Undefined = without normal form. If FV(M) = X then M is solvable iff AXX M is solvable.
Can we identify all such terms?

No: for instance Ax.xKQ = A\x.xSQ implies K =S
(apply both to K).

Theorem

A term is solvable iff it has a head normal form.

Proof for closed terms:

Moral: A term without normal form can still behave in (=) If MP =4 | then MP A MP head normalizes
a We”—deﬁned way. In a sense it haS a ,,Value”. then also M must head normalize_

(<) f M =5 ax2...%. %Ry ... Ry, then MP ... P =1,

Better idea: Value = Head normal form. for P=Ays...yml.

Undefined = without head normal form.

The standard theory Observational equivalence
We identify all unsolvable terms as “undefined”. Terms M, N with FV(M) U FV(N) = X, are observationally
equivalent (M = N) when, for all closed P:
Which solvable terms may be now be consistently identified? P(AX.M) is solvable <= P(AX.N) is solvable
We cannot classify terms by their head normal forms. Put it differently:
Too many of them! C[M] is solvable <= C[N] is solvable

We can only observe their behaviour. Note: If M —. N then M = N
: =, =N.



Bohm Trees
BT(AX.yP; ...P,) = M.y

BT(P) BT(P) - - - BT(P)

If M has a hnf N then BT(M) = BT(N).
If M is unsolvable then BT (M) = L.

Example: J =Y (Afxy. x(fy))

The tree BT (J) consists of one infinite path:

AXYo. X——AY1. Yo AY2. Y1 A3 2
The tree BT () consists of a single node: A\x x

The first can be obtained from the second by means of
an infinite sequence of 7n-expansions:

AXX e AXYo. X Yo pe  AXVo. XA Yo

N

Example: J =Y (Afxy. x(fy))

Write ® for Mfxy. x(fy)). Then:

J=Yo =5 0J =5 \xy. x(Jy) =5 A\xyo. x(PIyo)
=5 Axv0. X(Ay1. yYo(Iy1)) =5 Axyo. x(Ayr- yo(PIyr)) =5 - ..

The tree BT (J) consists of one infinite path:

AXYp. X AV1- Yo AYa. 1 Ay3. Yo+

When are terms observationally equivalent?

Bohm trees B i B’ are n-equivalent (B ~,, B’'), if there are
two (possibly infinite) sequences of 7-expansions:

B:BonHBlnHB2n<—B3n<—"‘
B'=Byy— By By =By -+
converging to the same (possibly infinite) tree.

Theorem

Terms M and N are observationally equivalent
if and only if BT (M) =, BT(N).



Semantics

Goal: Interpret any term M as an element [M] of some
structure A, so that M =5 N implies [M] = [N].

More precisely, [M] may depend on a valuation:
v: Var — A

Write [M],, for the value of M under v.

Extensionality

Write a ~ b when a-¢c = b- ¢, for all c.
Extensional interpretation: a =~ b implies a = b, for all a, b.

Weakly extensional interpretation:

[Mx.-M], =~ [Ax.N], implies [Ax.M], = [Ax.N],, for all N, v.

Meaning: Abstraction makes sense algebraically.
(N.B. |]:)\X.M]]V ~ []:)\X.N]]V iff [[Mllv[XHa] = |[N]]v[x»—>a]1 all a.)

Lambda-interpretation: A= (A,-,[])

Application - is a binary operation in A;
[1:AxA — A
Write [M], instead of [ [(M, v).

Postulates:

(@) Dy = v(x);

(b) PRI, =TPL. - [Ql.;

(c) [Ax.P]lv-a=[Plijxa for any a € A;
(d) If vlrv(py = ulpv(p), then [P], = [P]..

Lambda-model

Lambda-model: Weakly extensional lambda-interpretation:

[Ax.M], = [Ax.N], implies [Ax.M], = [Xx.N],



Very Important Lemma

Lemma
In every lambda-model,
[Mlx == N]lv = [M]ypx—np.)-
Proof:  Induction wrt M. Case of A with x & FV(N).
[y P)ix == N]vpmyy) - @ = Py Plx == N], - a
= [Plx := Nlvyea) = [Pty el vy,
= [Plviy—ajie—ing,) = [AY-Plvix—ny,) - @ for all a.

Therefore [(Ay P)[x := N]]vix-png) = [(AY-P)lviemng.-

Completeness

Theorem
The following are equivalent:
].) M =3 N,'
2) Al M =N, for every lambda-model A.

Proof.
(1)=-(2) By soundness.

(2)=-(1) Because term model is a lambda-model.

Soundness

Proposition
Every lambda-model is a “lambda-algebra”
M =5 N implies [M], = [N].
Proof: Induction wrt M =3 N. Non-immediate cases are two:
(Beta)
[(x.P)QL, = Pl - [QL = [Plgetar = [Plx = QL.
(Xi)
Let P =5 Q and let M = Ax.P, N = Ax.Q. Then
M], - a=[Plvx—a = [Qlvjxoa = [N]. - a, for all a.

Complete partial orders

Let (A, <) be a partial order.

A subset B C A is directed when for every a, b € B there is
c € Bwith a,b < c.

The set A is a complete partial order (cpo) when every
directed subset has a supremum.

It follows that every cpo has a least element | = sup .



Complete partial orders Complete partial orders

Let (A, <) and (B, <) be cpos, and f : A — B.
If (A, <) and (B, < then:
Then f is monotone if a < a’ implies f(a) < f(a'). (A, <) and (B, <) are cpos then
» The product A x B is a cpo with
And f is continuous if sup f(C) = f(sup C) (a,b) < (a',b)iffa<a and b< V.
for every nonempty directed C C A.
» The function space [A — B] is a cpo with

Fact: Every continuous function is monotone. f <giff va.f(a) < g(a).

[A — B] is the set of all continuous functions from A to B

Continuous functions Continuous functions
Lemma

A function f : A x B — C is continuous iff it is continuous
wrt both arguments, i.e. all functions of the form Na. f(a, b) Lemma

and Ab.f(a, b) are continuous. The application App : [A — B] x A — B is continuous.

Proof. Proof: Uses the previous lemma.

(<) Take X C A x B directed. Let X; = m;j(X) for i =1,2.

Step 1: If (a,b) € X; x X, then (a, b) < (a, b)) € X. Lemma

Step 2: Therefore sup X = (sup X1, sup Xp) = (aq, bo). The abstraction Abs : [(Ax B) — C] — [A— [B — (]|,
We show that (f(ag), f(bo)) is the supremum of f(X). given by Abs(F)(a)(b) = F(a, b), is continuous.

Let ¢ > f(X), then ¢ > f(a, b) for all (a, b) € X; X X.
Fix a, to get ¢ > sup, f(a,b) = f(a, by).
Fix by, to get ¢ > sup, f(a, by) = f(ao, bo). O °



Reflexive cpo Reflexive cpo

F:D—[D—D], G:[D—D]—D, FoG=id.
The cpo D is reflexive iff there are continuous functions

F:D—I[D—D]and G:[D— D]— D, Define application as a- b = F(a)(b) so that G(f)-a = f(a).

with F o G = idjp_p. o .
[b=0] Define interpretation as

Then F must be onto and G is injective. » [x], = v(x);
> [PQRL = [P]. - [Q]y;
The following are equivalent conditions: » [Mx.P], = G(ANa.[P]yxa])-
"GoF =idp’, "G onto’, 'F injective”. Fact: This is a (well-defined) lambda interpretation.

(Use continuity of App and Abs.)

Reflexive cpo

Theorem

A reflexive cpo is a lambda-model.

Proof.

Prove weak extensionality: let [Ax.M], - a = [A\x.N], - a, all a.
Note that [Ax.M], - a = G(Aa.[M]y[x—z)) - @ = [M]vjx—a).
and thus Aa.[M], 2 = Na.[N]y[x—a)- By the injectivity

of G, it follows that [Ax.M], = [Ax.N],. O



