Simple types

Types:

» Type constant 0 is a type.

Typy proste

» If o and 7 are types then (0 — 7) is a type.

Alternatywne podejscie: inne state lub zmienne typowe.

Konwencja:

15 kwietnia 2013 » Zamiast (7 — (0 — p)) piszemy 7 — o — p.

Kazdy typ ma posta¢é 7, — --- — 7, — atom.

Church style syntax (orthodox) Church and Curry
Church style:

Assume infinite sets V. of variables of each type 7. » New syntax, built-in types.

Define sets T, of terms of type 7: » Every term has exactly one type.

» A variable of type 7 is a term of type T; » No “untypable” terms.

» fMe T, .and N €T, then (MN) € T; Curry style:

> If M e T and x € V;, then (AxM) € T,_.. Ordinary untyped lambda-terms.

Types are derivable properties of terms.

>
>
Write M? for M € T, and define beta-reduction by > System of type assignment rules.
(Ax7. MT)N° = M[x° := N]. » A term may have many types or none.
>

Typability not obvious.



Non-orthodox Church Relating systems

Type-assignment with type annotations on bound variables.

M(x:0)Fx:0 (Var) Orthodox Church terms are like

» Non-orthodox terms in a fixed infinite environment.
Mx:0)FM:7

(Abs) » Curry-style type derivations.
[FXxioM:0—T1

rEM:-0—7 TEN:o Konwencja: Typy jako gérne indeksy, np.
M- MN:7 (App) (AxT MT)N7 - 7

Fact: f TFM:7and TH M : o then 7 = 0.

Properties Definable functions

Liczebniki Churcha n = Afx. f"(x) maja kazdy typ postaci
Subject reduction property: wy = (0 — ) — (0 — o).
Beta-eta reduction preserves types.
A function f : NK — N is $-definable in type w, if there is

Strong normalization: a closed term F such that

Every typed term is strongly normalizing. > EFiw, = w, — W,

» If f(m,...,nx) =mthen Fny...ng =3 m.



Examples

» Addition: An“" Am“s Af7~7 \x?. nf (mfx);
» Multiplication: An“e Am*“> Af°~7Ax?. n(mf)x;

» Test for zero (if n = 0 then m else k):

An“e xm®@e \k“o \f77 Ax7. n(Ay?.kix)(mfx).

Definable functions

Theorem (H. Schwichtenberg'76):

For every o the functions beta-definable in type w,

are exactly the extended polynomials.

Extended polynomials (wielomiany warunkowe)

The least class of functions containing:

Addition;
Multiplication;
Test for zero;

Constants zero and one;

vV v v v v

Projections,

and closed under compositions.

Example: f(x,y) = if x =0 then if y =0 then pi(x,y)
else py(x,y) else if y =0 then p3(x,y) else ps(x,y).

More definable functions

A function f is non-uniformly definable if there is a closed
term F such that

> F Wy, = = Wy, = Wo
» If f(ny,....,nk) = mthen Fny...ngy =3 m.
Examples:

» The predecessor function p(n) = n— 1 and the
exponentiation function exp(m, n) = m" are
non-uniformly definable. (Easy)

» The subtraction minus(m,n) = m = n and equality test
Eq(m,n) =if m = n then 0 else 1 are not definable
non-uniformly. (Hard)



Equality

Theorem (R. Statman'79): The equality problem
Are two well-typed terms beta-equal?

is non-elementary. That is, for no fixed k it is solvable in time
2n
2" }k
2

Exercise: How long is the normal form of 2---2xy?

Representing data types

» Natural numbers are generated by
» Constant 0 : int;
» Successor s : int — int.

They correspond to long normal forms of type
w=(0—-0)—0—0

» Words over {a, b} are generated by

» Constant ¢ : word;
» Two successors Aw(a - w) and Xw (b - w)
of type word — word.

They correspond to long normal forms of type
word=(0—-0)—(0—-0)—0—0

The inhabitation problem

Inhabitation problem:
Given I', 7, is there M such that T = M : 77

Fact (R. Statman):

Inhabitation in simple types is decidable and Pspace-complete.

Representing data types

» Binary trees are generated by

» Constant nil : tree;
» Constructor cons : tree — tree — tree.

They correspond to long normal forms of type
tree=(0—0—0)—0—0

Generalization:
Free algebras correspond to types of order two, i.e, of the form

(0”1—>0)—>---—>(O"’<—>0)—>0



Type reducibility Semantics for finite types

Definition: Type 7 is reducible to type o iff there exists

a closed term ® : 7 — o such that the operator AM:7. dM Assumptions:
is injective on closed terms, i.e.,
OM, =3, ®M, implies M, =5, My » Orthodox Church style;

for closed My, M, : T.
» Only one atomic type O;

Theorem (R' Statman): » Extensional equality =g,

Every type over a single type constant 0 is reducible to tree.

Standard model 97(A) Completeness

Theorem (Harvey Friedman):

» Basic domain Dy = A; Terms are (n-equal iff they are equal in OMM(N).

» Function domains: D,_,. = D, — D,; Proof:
» Obvious semantics: Define partial surjections o, : D, —o— T,/—, by induction:
> [x]v = v(x);

» [MN], = [M].([N]v):
> |[>\XT. M]]V = AdeD;. |[M]]V[XI—>d]'

For 0 = 0 take o : N — Tg/_, to be any (total) surjection.
(Terms of base type are represented by their numbers.)

For function types, we represent (the behaviour of)
lambda-terms using integer functions, so that:

¢o(ab) = r—..(a)e-(b).



Completeness proof

Given ¢, : D, —o— Tg/:ﬁn and ¢, : D, —o— TT/:ﬁn,
we say that a function f : D, — D, represents a term M™ 7
when (informally) the following diagram commutes:

D. f D,
Pr Po
T./_ T,/—

/= A, Mt /=

For any M, there exists such an f (not unique).
For a given f, such an M (if exists) is unique up to (7.

"Partial epimorphism™:  fe =g, f(e)

e D, f D, f(e)
k Pr Po ‘
e TT =Bn f TU/ =Bn @

At. Mt

Completeness proof

Define partial surjections o, : D, —o— T,/—, by induction:

» oo :N— To/—,, is any (total) surjection.
> 0, o(f) =[M]-, ~ when f represents M.

Abbreviation: If d € D,, write d for p,(d).

Main property:
If f and € are defined then f(e) is defined and f & =5, f(e)

Completeness proof

Lemma:
Take v so that v(x) = x, for all x. Then M =3, [M],, all M.

Main Proof: Let M(N) = M = N. Then [M], = [N],,
for all v, in particular for v as above. Therefore

M =s, [M], =5, [N], =5, N.




Finite completeness

Theorem (R. Statman):
For every M there is k such that, for all N:

M=g, N iff k) EM=N.

Corollary:

Terms are 3n-equal iff they are equal in all finite models.

Let p(m)(n) =27 (2n+1). Then p € Dy_g_o in M(N).
Observe that p(m)(n) > m, n, for all m, n.

Term zamkniety typu tree, to w istocie drzewo.

Wartos¢ [M](p)(0) mozna uwaza¢ za numer tego drzewa.

Cwiczenie: Jaka liczba jest numerem drzewa

Apx. px(p(pxx)x)?

Finite completeness proof

It suffices to prove that
for every closed M : tree there is k such that, for all N : tree:
M= N iff  D(k)=M=N.

Indeed, for closed M : 7, consider (M),
where ® is a reduction of T to tree.

For non-closed terms, consider appropriate lambda-closures.

For M : tree, define k =2 + [M](p)(0), i.e. 2+ numer(M).

Let p’ : k — k — k be p ,truncated” to values less than k.
Then p’ € Dy_9_p in Dﬁ(k)

Suppose N(k) = M = N. Then in the model M(k):
k=2 =[M](p')(0) = [N1(p')(0) (*)

But all numbers needed to verify (*) are at most k — 2.
(Otherwise the rhs equals k — 1.)

Therefore [M](p)(0) = [N](p)(0) holds also in M(N).
It follows that M =g, N.



Equality is not definable in simple types

There is no E : w, — w, — w,, such that for all p,q € N:

Wo __

E p“ q* =g, 0“" iff p=q.

Proof: By Statman’s thm., take k such that for all N : w,:
Mk) =0 =N iff 0% =4, N.
There are p # g with [p“7] = [a*"] in (k). So in M(k):
[Epra*-] = [Elp*"1[a*"] = [E]la* 1[a*"] =
[Eq“rq*~] = [0+7]
Thus M(k) E Ep“~q“~ = 0, whence p = q.

Undecidablility of lambda-definability

Theorem (Ralph Loader, 1993):
Plotkin’s problem is undecidable.

Proof: Reduction from the undecidable word problem
for Semi-Thue systems.

Semi-Thue system: a finite set of rules C = D, where
C,D C {a, b}*. Induces rewriting xCy — xDy, for any x, y.

Word problem: Can a word w be rewritten to v in a finite
number of steps?

Plotkin's problem

Given d € D; in a finite model 2M(X).
Is there a term M : 7 with [M] = d7

More generally:

Let v(xi) = €1 € Dyy,...,v(xn) = €y € D,,.
Is there M such that [M], = d7

(Is d definable from ey, ..., e,7)

Fact: These decision problems are reducible to each other.

Undecidablility of lambda-definability

Theorem (Ralph Loader, 1993):
Plotkin's problem is undecidable.

Proof: Reduction from the undecidable word problem
for Semi-Thue systems.

Kodujemy stowa w i v i reguty systemu jako elementy modelu
Pytamy, czy v jest definiowalne z w i regut.



Proof

Take X = {a,b,L,R,%,1,0}. Encode any word w = 0; ... 0,
as a function w : D — Dy, such that

» W(x---x0;%---%) =1, if the i-th symbol in w is o;;
> Wk x LR*---%) =1;

» w(...) =0, otherwise.

How does it work?
Fix X, Z and consider the function g = A\y. w(X)(y)(2).

Depending on X, Z, the function g is as follows:

X g zZ
Koo kO Kk | X Koo *
. . T . .
Koo * X(son) | HookOpk ook
$o ok LR* -k | XYoo Koo .
Koo % L X{Rews) Koo *
Koo * X (o) Rsenvnn- *
Koo X Xoow) | Foook LR # -

Otherwise g = Y.

How does it work?

For w = wy Cwy we have W = AXAYAZ. W(X)(Y)(Z).

Fix X, Z and consider the function g = A\y. w(X)(y)(2).

It “accepts” the following strings (depending on X, Z):

X y z
* * Of % vk Koo * Koo *
P " <ame 25 C P "
Koo * Koo * Kook O K-k
* * LR % * Koeooons * Koo *
U v L Re . ... " P "
P " U v L Re- ... "
Koo * Koo o ens * * * LR % *

How to encode a rule F = (C = D)?

Fix X, Z and consider the function g = \y. w(x)(y)(Z).

What will change in this table if we replace wy Cw, by wy Dw,?

X g 4

*o kO Kk | X Koo *
. . c . B}
oo * Xoow) | *oee %O %ok

sk LR ¥k | X(aon) Koo .
Koo %L X{(Res) Koo .
Koo " X{snl) Rsovvnn- "
Koo " X(oon) | *o % LR %%
otherwise Xo otherwise




How to encode a rule F = (C = D) Claim

Every rule F = (C = D) is encoded as a function

F:(Dr — Do) — (D§ — Dy), A word w can be rewritten to v iff the element v of M(X)

is definable from W and the functions F encoding the rules.
where m = |C| and n = |D|. We take:

F(X ) =x . The easy part: Let w = wy Cw, rewrites to v = wy Dw,
tred treh using F = (C = D). Assume that term \V defines w.

> F(X{Res}) = X{Rewi}; Then Vv is definable by

— 27 F(\Nv WxuF\i *
> F(xX(s- *L}) X{rnl): V = X\xidz, F(\y. WXyZ)d, (*)

F(C) - It follows that codes of reachable words are definable.
>
> F(g) = xo, for any other g. The hard part: And conversely.



